Electricity: conductors and insulators – Conduits – cables or conductors – Extensible
Reexamination Certificate
1999-11-02
2001-12-04
Reichard, Dean A. (Department: 2831)
Electricity: conductors and insulators
Conduits, cables or conductors
Extensible
C174SDIG009, C242S615000, C312S273000
Reexamination Certificate
active
06326547
ABSTRACT:
TECHNICAL FIELD OF THE APPLICATION
This invention relates generally to cables and more specifically to a method and apparatus for managing cables extending from and connected to electronic devices.
BACKGROUND OF THE INVENTION
Electronic systems, such as computer and telecommunication systems, have become increasingly more complex and typically require numerous cable connections. A multitude of cables generally extend from each device. The cables of each device tend to become entangled and impede access to the device from which the cables extend from. As a result, it is typically difficult to service a computer or telecommunications system without the risk of mistakenly knocking out a cable, or accessing an incorrect cable.
Computer and telecommunication devices are typically maintained on rail-like cabinet systems. When a device requires service, a service technician typically accesses and opens the rear of the device's enclosure to access components within the device. However, since numerous cables typically extend from the rear of the device, this tends to be a difficult if not impossible task.
The difficulty of cable management has been exasperated by the computer industry's attempt to standardize the dimensions of the rail-like cabinet systems used for housing electronic devices. Since standardization of the cabinet systems tends to restrict increases in available rack space and depth of the cabinets, and because the dimensions of certain devices have increased, less space is available to manage the cables extending from each device. Furthermore, since the configuration of electronic devices housed on racks has increasingly become more dense, the space occupied by the devices tends to utilize the maximum amount of room provided by each rack. Due to the increased density of devices, a greater number of cables extend from each device in less available space, a condition conventional cable management systems are unable to accommodate.
Conventional cable management systems have unsuccessfully attempted to resolve this problem. For example, one type of conventional system typically includes fixed brackets that attempt to organize and control the cables extending from a device. However, since the brackets are fixed and therefore do not extend away from the device, the brackets ultimately provide a barrier that restricts access to the device. As a result, service personal are typically required to service the device by sliding the device forward. Once the device is moved forward, service personal must turn the device toward one side in an attempt to access the rear portion of the device.
Moving the device forward and turning the device toward one side pose a significant risk to the device's cable connections. For instance, fully extended cables may be pulled out. Cables tightly fastened to the device may jerk the device backward resulting in damage to the device. Thus, while conventional cable management systems may organize and control cables that extend from a device, these systems tend to restrict access to the device and may indirectly cause the device to be damaged during servicing. Furthermore, since there is a risk of over-extending the cables, it is typically necessary with conventional cable management systems to use extra long cables. Given that a typical server may include 39 or more cable connections, use of extra long cables becomes a costly necessity.
Conventional cable management systems tend to include two cable management arms. Since the maximum length of each arm is limited to the standard 17.5 inch width of a cabinet rack, the cable management provided by conventional systems is limited. Furthermore, the cables are typically held to the arms by clasps. A problem associated with conventional cable management systems is that this configuration tends to apply excessive force upon cable connectors and upon the components connected to the cables. These unwanted forces can cause signal loss along the cables and excessive and unsafe wear of the cables, cable connectors, and components. Furthermore, conventional cable management system clasps tend to prevent movement of the cables along the brackets. Hence, when a device is moved forward, conventional cable management system clasps prevent the cables from sliding across the rail brackets. As a result, the cables may either be pulled out from the device, or may cause the device to be jerked back, thereby damaging the device.
Conventional cable management systems also typically include brackets positioned in close relation to the device from which the cables extend from. The proximity of numerous cables clasped to brackets to the device tends to create a barrier that impedes the air flow entering and exiting the device. Impeding the device's air flow may cause the device to overheat and may ultimately damage the device.
As a result of the shortcomings of conventional cable management systems, there exists a need for a system and method for organizing and controlling cables extending from an electronic device that provides unimpeded device access, unrestricted cable movement and unimpeded air flow into and out of the effected device.
SUMMARY OF THE INVENTION
The present invention substantially improves on prior art systems and methods for managing cables that extend from a device. The cable management system of the present invention utilizes a multi-level, multi-arm bracketing system that includes at least three arms. The system provides unimpeded device access, unrestricted cable movement and unrestricted air flow into and out of the device. The system attaches to a secure structure and is capable of boxing out from the structure to allow access to service a device positioned within the secure structure. The cable management system comprises at least three cable arms of rigid material, a coupling member attached between each adjacent pair of cable arms of the at least three cable arms, where the coupling member provides movement between each of the adjacent pairs of cable arms of the at least three cable arms.
Typically, the devices are stored in a rail-like cabinet system that allows the device to be pulled out from a rack that is mounted to the rails. Because the cable management system of the present invention can be boxed out, it is possible to service the device from the rear so that it is not necessary to move the device. If however, it is necessary to pull the rack housing the device fully forward or backward, the system provides for comprehensive cable management as the device is moved into its new position. The comprehensive cable management provided by the present invention allows the use of higher cable counts and high cable mass cross sections. Hence, devices may be moved a greater distance for servicing, and therefore, may be manufactured into longer devices since a larger volume of each standardized rack may be used.
The present invention, in accordance with one embodiment, provides a system for managing at least one cable comprising: at least three cable arms of rigid material; a coupling member attached between each adjacent pair of cable arms of the at least three cable arms, wherein the coupling member provides movement between each of the adjacent pairs of cable arms of the at least three cable arms; and a cable slider slideably mounted upon at least one of the at least three cable arms, wherein the cable slider is capable of holding the at least one cable in a position such that the at least one cable can shift across the cable slider.
The present invention, in accordance with another embodiment, provides a system for managing at least one cable comprising: at least three cable arms; and a coupling member attached between each adjacent pair of cable arms of the at least three cable arms, wherein the coupling member provides movement between each of the adjacent pairs of cable arms of the at least three cable arms and allows the at least three cable arms to box out in spaced relation from a structure.
The invention may be better appreciated from the following Figures, taken togethe
Allen Joseph R.
Coles, III Henry C.
Hardt Thomas T.
Hunt Christopher
Kliewer Edward J.
Compaq Computer Corporation
Fenwick & West LLP
Nino Adolfo
Reichard Dean A.
LandOfFree
Cable management system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cable management system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cable management system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2591140