Supports: racks – Special article – Electrically powered
Reexamination Certificate
2000-08-07
2002-08-20
Chin-Shue, Alvin (Department: 3634)
Supports: racks
Special article
Electrically powered
Reexamination Certificate
active
06435354
ABSTRACT:
TECHNICAL FIELD
The present disclosure relates in general to the field of electronics and to the storage and management of computer equipment. More particularly, the present disclosure is related to a cable management arm assembly and method of cable management.
BACKGROUND
Electronic devices such as computer components can be stored in an electronics rack system, sometimes referred to as a rack system or rack, to conserve floor space. A variety of different computer components including servers, computers, storage devices such as disk drives, tape drives, and RAID drives, as well as other electrical devices can be housed in rack systems. Standards such as the Electronics Industry Association (EIA) RS-310 19″ rack standard have been developed to standardize the height and width of electronics racks to facilitate effective use of the space within rack systems.
The vertical space within a rack system is generally defined in vertical mounting unit increments, often referred to as “U's”. A mounting unit or U is typically 1.75 inches. Interior rails of rack systems often have three mounting slots within each U of vertical space for attaching components. Rack systems and components are typically sized in mounting unit increments. For example, “2U” components are sized to fit within a 2U vertical space. “48U” and “72U” racks are sized to have 48U and 72U, respectively, of usable vertical space.
Access to components is often provided by a slideable structure attached to the interior rails of the rack system. These structures allow the associated components to slide forward for maintenance, repair, or installation. Also, the back of many rack system are often accessible by opening a panel or door on the back of the rack to gain access to the back or rear of components stored within a rack system.
Components stored within a rack system typically have a number of cables protruding from the rear of the components. In addition to power cables, components often have multiple input and output cables connecting one component to other components or systems housed within the rack or elsewhere. As components are installed within a rack system, cabling in the rear of the rack often becomes unmanageable. Also, to allow components to slide forward while maintaining desired electrical and signal connections, excess lengths of cable are typically provided behind each component. The excess lengths of cable contribute to cable management problems within electronics rack systems. Cables may become twisted and tangled or may snag on other cables or on other components. These cables often impede efforts to install additional components and cabling or remove components and cabling. To alleviate this problem, cable management arms are often employed.
A cable management arm is typically a hinged assembly attached to the back of the associated component. The cables are often secured to the cable management arm. When a component slides into the rack system, the cable management assembly folds behind the associated component. When the associated component slides forward, the cable management assembly unfolds and extends as necessary to maintain the desired electrical and signal connections.
While cable management arms can alleviate some problems within rack systems, they often create a host of new problems. Often, these problems begin at installation. Cable management arms are frequently attached to the interior frame of the associated rack by a number of individual fasteners. Installing and removing these fasteners to the rear of the rack system can be difficult, frustrating, and time consuming, even for an experienced technician. This is especially the case when a number of other components and their associated cabling hinder access to the rear of the rack system.
Also, cable management assemblies often include three hinged arms. As these arms fold behind the associated component, they occupy a significant amount of space between the associated component and the rear of the rack system. This may cause two undesirable consequences, first the tri-folded cable management assembly may restrict the flow of air through the rear of the rack system, preventing various components stored within the rack system from cooling properly. Second, the compacted cable management assembly often interferes with access to the components through the back of the rack system. Specifically, when the rear panel is opened, the tri-folded management assemblies are often pushed rearward, making it difficult to properly close the rear access panel of the rack system.
SUMMARY
Therefore a need has arisen for a cable management system that provides for less complex installation.
A further need has arisen for a cable management system that allows greater air flow through the rack system.
A further need has arisen for a cable management system that facilitates access to the rear portion of a rack.
In accordance with teachings of the present disclosure, a system and method are described for managing cables within a rack system. In one aspect, a computer rack system for mounting one or more computers is disclosed that includes a rack that has a standard interface and a cable management assembly. The cable management assembly acts to secure cables connecting various components housed within the rack system. The cable management assembly includes a rack connector, a first dual hinge assembly, a first arm, a second arm, and a component connector. The rack connector may be formed to releaseably connect to a standard interface of the associated rack. The first dual hinge assembly is preferably connected to the rack connector. The first arm connects with the dual hinge assembly and the second arm rotatably connects to the first arm. A component connector is preferably rotatably connected to the second arm and is formed to connect to a computer component housed within the rack system. More specifically, the rack connector may include a keyed interface for connecting with a standard interface and a threaded hole for releaseably securing the rack connector to the standard interface with a fastener. More specifically, the first arm and the second arm may have portions removed to facilitate air flow through the rack system.
In another aspect of the present disclosure, a cable management assembly is provided with a first hinge assembly having a dual hinge connected to a rack connector and a first arm. A second arm may be rotatably connected to the first arm and a component connector rotatably connects to the second arm. More specifically, the hinge assembly includes a dual hinge assembly connecting the first arm and second arm.
In yet another aspect, a method for managing cabling within a rack is disclosed. The method may include rotatably securing a first arm and second arm with each other and pivotally securing the rack connector to the first arm. The rack connector may be releaseably engaged to a standard rack interfere within the associated rack system. The method may further include securing a component connector to a component housed within the rack and securing component cables within tabs disposed along the first arm and the second arm.
The present disclosure provides a number of important technical advantages. One such advantage is providing a rack connector with a keyed interface. The keyed interface allows a cable management assembly to be easily secured to a standard interface within an associated rack system.
Having portions removed from first arm and second arm is another important technical advantage of the present disclosure. The removed portions of first arm and second arm facilitate air flow through the rack system. Providing a cable management assembly with only two arms while allowing substantially the same amount of movement of an attached component as previous three arm cable management assemblies, is another important advantage. The two arm configurations formed in accordance with teachings of the present disclosure generally require less space in the rear of the rack system when the cable management assembly is in its fold
Gray Randolph D.
Williams Tiffany J.
Baker & Botts L.L.P.
Dell Products L.P.
Purol Sarah
LandOfFree
Cable management arm assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cable management arm assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cable management arm assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2968005