Implements or apparatus for applying pushing or pulling force – Method or apparatus for placement of conductive wire – Cable lashing
Reexamination Certificate
2000-05-09
2002-06-04
Watson, Robert C. (Department: 3723)
Implements or apparatus for applying pushing or pulling force
Method or apparatus for placement of conductive wire
Cable lashing
Reexamination Certificate
active
06398189
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a cable lasher for use in lashing a cable, such as a telephone or transmission cable, to a support strand, such as a strand supported in the air between utility poles. More specifically, the present invention relates to a cable lasher that may be displaced along a support strand that is strung between utility poles so that a lashing wire is paid out during displacement of the cable lasher to helically wrap and securely tie the cable to the support strand.
BACKGROUND OF THE INVENTION
Utility cables, such as telephone cables, are frequently routed between selected locations as overhead wiring suspended from a series of utility poles. In an effort to prevent the telephone cable from sagging between adjacent poles, the cables are frequently tied or lashed to a support strand that is tightly strung between the poles. For this purpose, a conventional lasher is pulled along the support strand with a tether either by a worker on the ground or with the assistance of a vehicle or capstan winch. The cable is first loosely supported by temporary support brackets hung from the support strand. The lasher is then mounted on the support strand in position to engage the loosely supported cable. As the lasher is pulled along the support strand, a lashing wire is helically wrapped around the transmission cable and the support strand in order to bind the cable to the tightly strung support strand.
One of the drawbacks, however, with conventional lashers is that a downward force must be exerted on the lasher by the tether to hold the lasher in proper contact with the support strand in order to properly drive the lashing mechanism to wrap the lashing wire around the cable and the support strand. Consequently, if the conventional lasher inverts during use, the lasher may become inoperative. Another problem is that any backward rotation of a conventional lasher during use causes the helically wrapped lashing wire to inadvertently slacken.
Another problem associated with conventional lashers is the inability to maintain uniform tension on the lashing wire during use. If uniform tension is not maintained, a uniformly tight wind cannot be achieved. In accordance with the present invention, a cable lasher is provided that overcomes many of the deficiencies in conventional lashers. The lasher of the present invention operates to effect a uniformly tight wind of lashing wire while preventing any slackening caused by inadvertent backward rotation of the lasher during use.
SUMMARY OF THE INVENTION
In accordance with the present invention, a cable lasher is provided for securing telephone and transmission cables to a support strand strung in the air between utility poles.
In general, the cable lasher is movable along the support strand so that the transmission cable is fed through the lasher. The lasher includes a support frame such as a central support tube that extends longitudinally through the lasher joining a front section to a rear section. A mid-section of the lasher is comprised of a rotating drum that is rotationally supported relative to the central support tube between the front and rear section of the lasher. The rotating drum may contain at least one reel of lashing wire for lashing the cable to the support strand. From the reel, the lashing wire is wrapped around tensioning rollers and then around a drive wheel to maintain constant tension in the lashing wire regardless of the amount of wire paid out during lashing. The free end of the lashing wire exits the rotating drum and is then tied off to provide the tension in the wire. As the lashing wire is reeled off during movement of the lasher along the support strand, the lashing wire drives the drive wheel which in turn drives a gearbox that translates linear movement of the lasher along the support strand into rotational movement of the drum. The gearbox causes the drum to rotate relative to the frame about the cable as the cable lasher rides on the support strand. As the drum rotates, wire from the reel of lashing wire is helically wrapped around the cable and the support strand lashing them together. The gearbox includes a drive wheel assembly that operates under the control of a one-way clutch provided on the drive wheel to control the rotational movement of the drum.
In specific operation, the cable lasher is moveably clamped onto the support strand in position so that the cable is operatively fed through a generally hollow interior of the lasher when the lasher is pulled from the ground with a handline by a worker or with the assistance of a vehicle or capstan winch. The cable lasher functions to maintain constant tension in the lashing wire through use of the tensioning rollers and the drive wheel so that a uniformly tight wind is effected. The tensioning rollers and the drive wheel are linked together by the lashing wire from the reel. The tensioning rollers cooperate with the drive wheel to maintain the constant tension in the wire as it is paid out from the reel of lashing wire during use.
The drive wheel assembly causes the drum to rotate as the lasher rides on the support strand. As the cable lasher moves along the support strand, the gearbox functions to translate linear motion of the lasher into rotational motion of the drum. For this purpose, the drive wheel is engageable, under control of a user-operated clutch, with a bevel gear of the gearbox to effect the translation of linear motion of the lasher into rotational motion of the drum. The bevel gear drives other gears of the gearbox to rotationally propel the drum. When in gear, the gearbox allows the rotating drum of the cable lasher to rotate as the lasher rides on the support strand. As the drum rotates, wire from the reel of lashing wire is helically wrapped around the cable and the support strand lashing them together. When the user-operated clutch is actuated to disengage the gearbox from the drive wheel, the drum is free to rotate in either rotational direction.
The drive wheel assembly operates during normal use to limit the rotational motion of the drum in a single rotational direction only. As the lasher rides along the strand, a one-way clutch provided on the drive wheel prevents the drive wheel from rotating in the opposite direction of the helical lashing. When the drive wheel is engaged with the gearbox, the one-way clutch of the drive wheel likewise prevents reverse rotation of the drum. If reverse rotation is needed, the user-operated clutch can be used to disengage the drive wheel from the bevel gear of the gearbox. For this purpose, the drive wheel has a hex head opening that accepts a mating hex head of the bevel gear to enable the bevel gear to be driven during rotation of the drive wheel. The hex head opening on the drive wheel can be disengaged from the mating hex head on the bevel gear by manual activation of the user-operated clutch. Manual displacement of a clutch release lever displaces a clutch fork which pushes the drive wheel out of engagement with the bevel gear. When the drive wheel is disengaged from the bevel gear, the gearbox is disengaged from the drive wheel and the rotating drum can be rotated in either direction. Additionally, the lashing wire can then be pulled from the lasher without motivating the gearbox to rotate the rotating drum.
The reel of lashing wire is recessed into the drum to prevent objects, such as existing cables from catching on the reel as the cable lasher rides along the support strand. A side door on the drum partially covers the recessed reel and is secured in a closed position with a lock bolt. The door as well as the exposed head of the lock bolt is also recessed within the outer circumference of the drum. Accordingly, objects are prevented from catching or snagging on the reel, the lock bolt, or the door as the cable lasher rides along the support strand.
An outer removable reel cover is provided on the reel to provide access to the supply of lashing wire on the reel. View slots may be provided in the outer reel cover so that the user can estimate the amount of
Delaney Kevin J.
Miller Gary
Dann Dorfman Herrell and Skillman, P.C.
General Machine Products Co., Inc.
Watson Robert C.
LandOfFree
Cable lasher does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cable lasher, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cable lasher will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2892824