Optical waveguides – Accessories – Splice box and surplus fiber storage/trays/organizers/ carriers
Reexamination Certificate
2001-10-16
2004-04-13
Healy, Brian (Department: 2874)
Optical waveguides
Accessories
Splice box and surplus fiber storage/trays/organizers/ carriers
C385S136000, C385S137000, C385S138000, C385S139000, C174S092000, C174S093000
Reexamination Certificate
active
06721483
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is directed to a cable splice enclosure assembly. Assemblies of the type under consideration are particularly suited for enclosing and housing copper splice cables, and the invention will be described with particular reference thereto; however, the apparatus could equally well be used with other types of cables, such as fiber optic cables.
Many different types of cable enclosures are known in the prior art. These prior enclosures are satisfactory to a greater or lesser degree but often have certain defects which make them inconvenient to use or prevent them from being readily adaptable to changing environments and conditions. It is, accordingly, a primary object of the present invention to provide a cable enclosure assembly that is easy to assemble and use and which can be modified or adapted for different size cables and can be formed in a variety of different sizes that allow the size and number of splices to vary. In addition, the present invention provides an enclosure that allows ready access for changing or adding to the number of splices in the enclosure. It is also an object of the present invention to provide end plates which are designed to receive various size cables without requiring drilling or modification during field use.
It is desirable to provide end plates which are interchangeable with stainless steel closure shells and injection molded closure shells.
In existing closures, the sealing system utilizes mastic sealants which need to be replaced upon each re-entry. Thus, it is desirable to provide a seal which eliminates the use of mastic sealant which has a tendency to “gum up” and have to be replaced.
Existing closure systems typically have bolts captivated within the actual closure shell. This approach makes assembly more cumbersome, as each bolt needs to be accurately aligned to the mating nut to avoid cross-threading. Thus, tolerance between the bolt holes needs to be tightly kept. Thus, it is desirable to provide a fastening system which eliminates the potential for slight misalignment between fasteners and holes for fasteners.
While working on existing closures in an aerial location, the craftsperson typically carries the closure shells down to ground level to remove them from the work area. Once work is completed on a splice point of cable, the craftsperson then returns to ground level to retrieve the closure shells to reassemble the unit. If the closure shells are carried down one at a time, the craftsperson would need to scale up and down a ladder several times thus creating inefficiencies during the work process. Accordingly, it is desirable to provide a means for securing closure shells in an aerial location while cable splices are worked on.
Existing end plate washers used with closures are thick solid disks with concentric annular grooves which require a special tool for cutting. One 360° rotation of a cutting device through a groove produces a properly sized hole through which the cable can pass. The washer must be cut a second time from the outer diameter to the inner diameter to create a split through which the cable can be passed to the inner diameter. This cut (seam) creates a weak point in the washer when it is assembled into their end plate. Thus, it is desirable to develop a cutter for washers which allows the washer to be cut with one rotation.
It is also desirable to provide a plug for end plate holes which are adaptable to several size holes to reduce the number of plugs required to fill the end plate holes.
Accordingly, it has been considered desirable to develop a new and improved cable closure and assembly and washer cutter which would overcome the foregoing difficulties and others while providing better and more advantageous overall results.
SUMMARY OF THE INVENTION
The present invention relates to a cable closure and assembly. More particularly, it relates to a cable closure system which is to provide a lower cost splice closure with performance similar to a stainless steel splice case.
The closure can function with an existing foam-filled end plate system. This approach allows substitution of lower cost shells for the stainless steel shells. The existing customer base is trained and equipped to drill the existing foam-filled end plate system and are less likely to expend money for training personnel to assemble the end plate. The design and assembly of the closure shells is very similar to the stainless shells and does not require extensive training.
The closure shell and gasket system of the present invention is designed to function with the sealing washer end plate system of the present invention, the current foam-filled end plate system or a combination of both.
To reduce the closure cost even further, a sealing washer end plate system is provided to allow assembly of an end plate without any special drilling fixtures as required with the existing foam filled end plate.
The sealing washer end plate system is designed as an alternative to the existing foam-filled end plate system. However, the end plate is compatible with existing stainless steel splice case shells as well as the closure shells of the present invention.
More particularly, the invention relates to the housing assembly for enclosing and storing the cable splices. The housing comprises first and second end plates axially aligned and spaced apart from one another. First and second housing members are releasably and sealingly clamped to each other and enclose the end plates. The end plates are located at opposite ends of the housing members. The housing members are symmetrical with respect to each other.
A sealing member extends along a length of the housing members and is located along the longitudinal edge of at least one of the housing members. Third and fourth housing members are interchangeable with the first and second housing members and are also clamped to each other and enclose the end plates and are symmetrical with respect to each other. First and second housing members each comprise gas-assisted injection molded shells. Third and fourth housing members each comprise stainless steel shells. A rigid bar member is joined to the first and second end plates to hold them in an axially aligned and spaced relationship.
The housing members each further include a plurality of rib elements extending from exterior surfaces to form a support for permitting the housing member to rest on a flat work surface. At least one of the housing members comprises an alignment rib extending along a longitudinal axis of the housing member. The housing members each comprise a main body portion with clamping flanges extending outwardly therefrom and in opposed relationship to each other. The clamping flanges have inner end portions adjacent to the main body portions and have free outer ends. The seal member is positioned between the flange inner ends and is positioned between the inner end portions along a longitudinal axis of the housing members.
End plate seal members are embedded into channels at opposing ends of the housing members. A gasket extends along the longitudinal axis of the housing member and is connected to the end plate seal members. The gasket is recessed within a groove along the longitudinal axis of the first housing member. The gasket is located on the first side of the housing member and the sealing element member is located on the second side of the housing member. The second housing member also comprises a seal member located on a first side and a gasket recessed in a groove on a second side. The gasket of the first housing member and the seal member on the second housing member are compressed together to form a seal. The seal member on the first housing and the gasket on the second housing member are also compressed together to form a seal. The gasket is preferably comprised of neoprene rubber.
First and second retention members are provided which comprise a plurality of slotted openings which align with tabs on the housings. The retention members clamp the first and second housing members together. The reten
Cloud Randy G.
Grubish Christopher S.
Pisczak Philip J.
Healy Brian
Preformed Line Products Company
LandOfFree
Cable closure and assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cable closure and assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cable closure and assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3190161