Cabinet door operated faucet valve

Baths – closets – sinks – and spittoons – Supply outlet for a sink or bath – Mixing faucet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C004S675000, C004S623000, C137S599050, C137S884000, C251S295000

Reexamination Certificate

active

06219859

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to sink faucets and, more specifically, to an automatic valve control system for remotely activating a water faucet.
2. Description of the Prior Art
Remote and automatic control of a sink faucet go back many years. In early years, the use of photo cells and foot pedals were common, and, more recently, the use of electronic proximity switches has become widespread. The introduction of numerous electronic controlled faucets in recent years points to the need of a functional multipurpose remote and automatic sink faucet control system. Besides the protection from transfer of bacteria and the convenience of hand free operations, the water saving potential and capability of a reliable, low maintenance, functional system will make such a device a necessity rather than a luxury.
Unfortunately, the electronic and foot pedal versions of faucet control valves have demonstrated many limitations and short falls, making the need for a more practical and user friendly device for households even more apparent. The existing electronic version of the faucet control valve limits its use for simple hand washing application. Its indiscriminate actuation by sensing an object makes this type of valve faucet useless for any other application that requires instantaneous on/off control of water flow. The uncontrolled and indiscriminate actuation by proximity or motion sensing devices make simple tasks such as dishwashing, clothes washing, or even sink cleaning a self defeating act. Other disadvantages of electronic faucets are the lack of control over the water flow and ability to override the system. In case of power failure, these units can only rely on limited storage capacity of the battery cells.
Furthermore, because the components of the electronic faucets are interdependent and inseparable, they replace the existing faucet without making any use of it. Also, because of extensive electronic circuitry and its related high cost, plus their functional limitations, the electronic faucets are most suitable only for newly built public hand washing facilities where high cost and limitations are not of any major concern.
Similarly, the floor mounted foot pedal is an obtrusive device, difficult to use and to install and requires extensive plumbing changes. The foot pedals' bulky space-taking body makes floor cleaning difficult and becomes an obstacle to foot traffic. Its use by the elderly and some physically impaired individuals is also limited. Due to extensive plumbing changes and its related high cost, foot pedal sink faucet controls are only suitable for institutional use. The impracticality, inconvenience, difficulty of installation and high cost of existing devices necessitates the need for a new device that is practical, responsive, easy to use, easy to install, and low cost.
To work in the consumer market, an automatic faucet control must be a retrofitted appliance, sold as a kit to be installed by consumer, which uses the existing plumbing and fixtures, and is responsive to almost every demand that one may expect from a faucet. To accommodate the existing plumbing and accessories such as water filters, ice makers, and auxiliary water heaters, the auto faucet inlet ports must be numerous and strategically placed for all conceivable connecting situations. The low cost, user-friendliness, and ease of installation would play a crucial role in success of such a product. To be practical it should be possible for a consumer to override the automation easily and conveniently. In the case of power failure, the consumer must be able to bypass the system with ease.
SUMMARY OF THE INVENTION
The instant invention fulfills the above stated needs by providing an automatic control system for a faucet of a sink, the automatic control system including a valve manifold adapted to be disposed beneath the sink, the valve manifold adapted to communicate with at least one of a hot water supply line and a cold water supply line and at least one of a hot water faucet connecting line and a cold water faucet connecting line for delivering water to the faucet of the sink, the valve manifold including at least one electrically actuatable valve for controlling the flow of water to at least one of the hot water faucet connecting line and the cold water faucet connecting line, the at least one electrically actuatable valve adapted to electrically communicate with an electrical power supply, and at least one switch adapted to selectively cause a connection between the electrical power supply and the at least one electrically actuatable valve to be completed, whereby, upon completion of the connection, the at least one electrically actuatable valve at least partially opens to allow the flow of water to the faucet, and the valve manifold including a diversionary valve adapted to allow water in the valve manifold to bypass the at least one electrically actuatable valve and flow to at least one of the hot water faucet connecting line and the cold water faucet connecting line.
Implementation of the above aspect of the invention may include one or more of the following. The diversionary valve includes a manually operable diversionary valve. The diversionary valve includes an automatic electrically actuatable diversionary valve adapted to open when power ceases to be supplied to the automatic electrically actuatable diversionary valve. The automatic electrically actuatable diversionary valve includes a biasing mechanism adapted to urge the automatic electrically actuatable diversionary valve closed when the automatic electrically actuatable diversionary valve is supplied with electricity and urge the automatic electrically actuatable diversionary valve open when the automatic electrically actuatable diversionary valve is not supplied with electricity. The biasing mechanism includes an electromagnetic mechanism adapted to close the automatic electrically actuatable diversionary valve when the electromagnetic mechanism is supplied with electricity and a spring adapted to open the automatic electrically actuatable diversionary valve when electricity is not supplied to the electromagnetic mechanism. The valve manifold is adapted to be disposed beneath the sink, inside a cabinet frame having a pair of hinged doors mounted thereon, the at least one switch adapted to be mounted to the cabinet frame, at least one of the doors including an internal surface facing the inside of the cabinet and adapted to contact the at least one switch when the at least one door is substantially closed, the at least one switch adapted to be activated by the internal surface of the at least one door when pressure is applied to an external surface of the at least one door. The at least one switch includes a latching switch that, upon being activated a first time, maintains completion of the connection of the electrical power supply and the solenoid valves until the switch is reactivated. The at least one switch includes a momentarily non-latching switch. The at least one switch and the at least one valve are adapted to provide variable flow control in the valve manifold proportionate to the amount of pressure applied to the external surface of the at least one door. The at least one switch includes a variable-resistance push switch and the at least one electrically actuatable valve includes a servo valve. The automatic control system further includes a wireless mechanism adapted to communicate the at least one switch with the at least one electrically actuatable valve to control the at least one electrically actuatable valve. The wireless mechanism includes a transmitter associated with the at least one switch, and a receiver and a control unit associated with the valve manifold, the transmitter is adapted to transmit a signal indicative of the state of the at least one switch to the receiver which communicates the signal to the control unit for control of the at least one electrically actuatable valve.
An additional aspect of the invention includes an automatic c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cabinet door operated faucet valve does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cabinet door operated faucet valve, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cabinet door operated faucet valve will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2554432

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.