C-aryl glucoside SGLT2 inhibitors and method

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S001110, C536S017300, C536S017400, C536S017500, C536S018400, C514S866000, C514S025000

Reexamination Certificate

active

06515117

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to C-aryl glucosides which are inhibitors of sodium dependent glucose transporters found in the intestine and kidney (SGLT2) and to a method for treating diabetes, especially type II diabetes, as well as hyperglycemia, hyperinsulinemia, obesity, hypertriglyceridemia, Syndrome X, diabetic complications, atherosclerosis and related diseases, employing such C-aryl glucosides alone or in combination with one, two or more other type antidiabetic agent and/or one, two or more other type therapeutic agents such as hypolipidemic agents.
BACKGROUND OF THE INVENTION
Approximately 100 million people worldwide suffer from type II diabetes (NIDDM), which is characterized by hyperglycemia due to excessive hepatic glucose production and peripheral insulin resistance, the root causes for which are as yet unknown. Hyperglycemia is considered to be the major risk factor for the development of diabetic complications, and is likely to contribute directly to the impairment of insulin secretion seen in advanced NIDDM. Normalization of plasma glucose in NIDDM patients would be predicted to improve insulin action, and to offset the development of diabetic complications. An inhibitor of the sodium-dependent glucose transporter SGLT2 in the kidney would be expected to aid in the normalization of plasma glucose levels, and perhaps body weight, by enhancing glucose excretion.
The development of novel, safe, and orally active antidiabetic agents is also desired in order to complement existing therapies, including the sulfonylureas, thiazolidinediones, metformin, and insulin, and to avoid the potential side effects associated with the use of these other agents.
Hyperglycemia is a hallmark of type II diabetes (NIDDM); consistent control of plasma glucose levels in diabetes can offset the development of diabetic complications and beta cell failure seen in advanced disease. Plasma glucose is normally filtered in the kidney in the glomerulus and actively reabsorbed in the proximal tubule. SGLT2 appears to be the major transporter responsible for the reuptake of glucose at this site. The SGLT specific inhibitor phlorizin or closely related analogs inhibit this reuptake process in diabetic rodents and dogs resulting in normalization of plasma glucose levels by promoting glucose excretion without hypoglycemic side effects. Long term (6 month) treatment of Zucker diabetic rats with an SGLT2 inhibitor has been reported to improve insulin response to glycemia, improve insulin sensitivity, and delay the onset of nephropathy and neuropathy in these animals, with no detectable pathology in the kidney and no electrolyte imbalance in plasma. Selective inhibition of SGLT2 in diabetic patients would be expected to normalize plasma glucose by enhancing the excretion of glucose in the urine, thereby improving insulin sensitivity, and delaying the development of diabetic complications.
Ninety percent of glucose reuptake in the kidney occurs in the epithelial cells of the early S1 segment of the renal cortical proximal tubule, and SGLT2 is likely to be the major transporter responsible for this reuptake. SGLT2 is a 672 amino acid protein containing 14 membrane-spanning segments that is predominantly expressed in the early S1 segment of the renal proximal tubules. The substrate specificity, sodium dependence, and localization of SGLT2 are consistent with the properties of the high capacity, low affinity, sodium-dependent glucose transporter previously characterized in human cortical kidney proximal tubules. In addition, hybrid depletion studies implicate SGLT2 as the predominant Na
+
/glucose cotransporter in the S1 segment of the proximal tubule, since virtually all Na-dependent glucose transport activity encoded in mRNA from rat kidney cortex is inhibited by an antisense oligonucleotide specific to rat SGLT2. SGLT2 is a candidate gene for some forms of familial glucosuria, a genetic abnormality in which renal glucose reabsorption is impaired to varying degrees. None of these syndromes investigated to date map to the SGLT2 locus on chromosome 16. However, the studies of highly homologous rodent SGLTs strongly implicate SGLT2 as the major renal sodium-dependent transporter of glucose and suggest that the glucosuria locus that has been mapped encodes an SGLT2 regulator. Inhibition of SGLT2 would be predicted to reduce plasma glucose levels via enhanced glucose excretion in diabetic patients.
SGLT1, another Na-dependent glucose cotransporter that is 60% identical to SGLT2 at the amino acid level, is expressed in the small intestine and in the more distal S3 segment of the renal proximal tubule. Despite their sequence similarities, human SGLT1 and SGLT2 are biochemically distinguishable. For SGLT1, the molar ratio of Na
+
to glucose transported is 2:1, whereas for SGLT2, the ratio is 1:1. The K
m
for Na
+
is 32 and 250-300 mM for SGLT1 and SGLT2, respectively. K
m
values for uptake of glucose and the nonmetabolizable glucose analog &agr;-methyl-D-glucopyranoside (AMG) are similar for SGLT1 and SGLT2, i.e. 0.8 and 1.6 mM (glucose) and 0.4 and 1.6 mM (AMG) for SGLT1 and SGLT2 transporters, respectively. However, the two transporters do vary in their substrate specificities for sugars such as galactose, which is a substrate for SGLT1 only.
Administration of phlorizin, a specific inhibitor of SGLT activity, provided proof of concept in vivo by promoting glucose excretion, lowering fasting and fed plasma glucose, and promoting glucose utilization without hypoglycemic side effects in several diabetic rodent models and in one canine diabetes model. No adverse effects on plasma ion balance, renal function or renal morphology have been observed as a consequence of phlorizin treatment for as long as two weeks. In addition, no hypoglycemic or other adverse effects have been observed when phlorizin is administered to normal animals, despite the presence of glycosuria. Administration of an inhibitor of renal SGLTs for a 6-month period (Tanabe Seiyaku) was reported to improve fasting and fed plasma glucose, improve insulin secretion and utilization in obese NIDDM rat models, and offset the development of nephropathy and neuropathy in the absence of hypoglycemic or renal side effects.
Phlorizin itself is unattractive as an oral drug since it is a nonspecific SGLT1/SGLT2 inhibitor that is hydrolyzed in the gut to its aglycone phloretin, which is a potent inhibitor of facilitated glucose transport. Concurrent inhibition of facilitative glucose transporters (GLUTs) is undesirable since such inhibitors would be predicted to exacerbate peripheral insulin resistance as well as promote hypoglycemia in the CNS. Inhibition of SGLT1 could also have serious adverse consequences as is illustrated by the hereditary syndrome glucose/galactose malabsorption (GGM), in which mutations in the SGLT1 cotransporter result in impaired glucose uptake in the intestine, and life-threatening diarrhea and dehydration. The biochemical differences between SGLT2 and SGLT1, as well as the degree of sequence divergence between them, allow for identification of selective SGLT2 inhibitors.
The familial glycosuria syndromes are conditions in which intestinal glucose transport, and renal transport of other ions and amino acids, are normal. Familial glycosuria patients appear to develop normally, have normal plasma glucose levels, and appear to suffer no major health deficits as a consequence of their disorder, despite sometimes quite high (110-114 g/daily) levels of glucose excreted. The major symptoms evident in these patients include polyphagia, polyuria and polydipsia, and the kidneys appear to be normal in structure and function. Thus, from the evidence available thus far, defects in renal reuptake of glucose appear to have minimal long term negative consequences in otherwise normal individuals.
The following references disclose C-aryl glucosides SGLT2 inhibitors for treating diabetes.
WO 01/27128 discloses compounds of the structure
where
A is O, S, NH, or (CH
2
)
n
where n is 0-3;
R
1
, R
2
and R
2a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

C-aryl glucoside SGLT2 inhibitors and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with C-aryl glucoside SGLT2 inhibitors and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and C-aryl glucoside SGLT2 inhibitors and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3162195

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.