C-4 carbonate taxanes

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C549S510000, C549S511000

Reexamination Certificate

active

06750246

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention concerns antitumor compounds. More particularly, the invention provides novel orally active paclitaxel derivatives, pharmaceutical formulations thereof, and their use as oral antitumor agents.
2. Background Art
Paclitaxel is a natural product extracted from the bark of Pacific yew trees, Taxus brevifolia and the active constituent of the anticancer agent TAXOL®. It has been shown to have excellent antitumor activity in in vivo animal models, and recent studies have elucidated its unique mode of action, which involves abnormal polymerization of tubulin and disruption of mitosis. It is used clinically against a number of human cancers. It is an important cancer agent both therapeutically and commercially. Numerous clinical trials are in progress to expand and increase the utility of this agent for the treatment of human proliferative diseases. The results of TAXOL® clinical studies have been reviewed by numerous authors. A very recent compilation of articles by a number of different authors is contained in the entire issue of Seminars in Oncology 1999, 26 (1, Suppl 2). Other examples are such as by Rowinsky et al. in TAXOL®: A Novel Investigational Antimicrotubule Agent, J. Natl. Cancer Inst., 82: pp 1247-1259, 1990; by Rowinsky and Donehower in “The Clinical Pharmacology and Use of Antimicrotubule Agents in Cancer Chemotherapeutics,” Pharmac. Ther., 52:35-84, 1991; by Spencer and Faulds in “Paclitaxel, A Review of its Pharmacodynamic and Pharmacokinetic Properties and Therapeutic Potential in the Treatment of Cancer,” Drugs, 48 (5) 794-847, 1994; by K. C. Nicolaou et al. in “Chemistry and Biology of TAXOL®,” Angew. Chem., Int. Ed. Engl., 33:15-44, 1994; by F. A. Holmes, A. P. Kudelka, J. J. Kavanaugh, M. H. Huber, J. A. Ajani, V. Valero in the book “Taxane Anticancer Agents Basic Science and Current Status” edited by Gunda I. Georg, Thomas T. Chen, Iwao Ojima, and Dolotrai M. Vyas, 1995, American Chemical Society, Washington, DC, 31-57; by Susan G. Arbuck and Barbara Blaylock in the book “TAXOL® Science and Applications” edited by Mathew Suffness, 1995, CRC Press Inc., Boca Raton, Fla., 379-416; and also in the references cited therein.
A semi-synthetic analog of paclitaxel named docetaxel has also been found to have good antitumor activity and is the active ingredient of the commercially available cancer agent TAXOTERE®. See, Biologically Active Taxol Analogues with Deleted A-Ring Side Chain Substitutents and Variable C-2′ Configurations, J. Med. Chem., 34, pp 1176-1184 (1991); Relationships between the Structure of Taxol Analogues and Their Antimitotic Activity, J. Med. Chem., 34, pp 992-998 (1991). A review of the clinical activity of TAXOTERE® by Jorge E. Cortes and Richard Pazdur has appeared in Journal of Clinical Oncology 1995, 13(10), 2643 to 2655. The structures of paclitaxel and docetaxel are shown below along with the conventional numbering system for molecules belonging to the class; such numbering system is also employed in this application.
paclitaxel (TAXOL®): R=Ph; R′=acetyl docetaxel (TAXOTERE®): R=t-butoxy; R′=hydrogen
Ample evidence that paclitaxel has no oral activity can be found within the following quote from PCT patent application WO98/53811 by inventors Samuel Broder, Kenneth L. Duchin and Sami Selim and the references cited within the quote, which says: “Paclitaxel is very poorly absorbed when administered orally (less than 1%); see Eiseman et. al., Second NCI Workshop on Taxol and Taxus (Sept. 1992); Suffness et. al. in TAXOL Science and Applications (CRC Press 1995). Eisemann et. al. indicate that paclitaxel has a bioavailability of 0% upon oral administration and Suffness et. al. report that oral dosing with paclitaxel did not seem possible since no evidence of antitumor activity was found on oral administration up to 160 mg mg/kg/day. Moreover, no effective method has been developed to enable the effective administration of oral paclitaxel (ie. a method of increasing the oral bioavailability of paclitaxel) or of other oral taxanes or paclitaxel analogs such as docetaxel which exhibit antitumor activity. For this reason, paclitaxel has not until now been administered orally to human patients, and certainly not in the course of treating paclitaxel-responsive diseases.” Another report by J. Terwogt et. al. from The Lancet, Jul. 25th 1998, vol 352 page 285 also describes the low bioavailability of paclitaxel after oral dosing. In our own work, we have orally dosed paclitaxel to doses as high as 160 mg/kg/inj in murine (mouse) tumor models (sc M109) without signs of any efficacy and have concluded, like Suffness, that further dosing would not provide efficacy even though toxic doses were not reached. Furthermore, our own attempts to demonstrate activity for orally administered paclitaxel against human tumor xenografts implanted in either athymic mice or athymic rats have to date been unsuccessful.
The intention of this invention is to describe C-4 methyl carbonate taxane analogs which have surprising oral activity and thus would have utility against proliferative diseases after oral administration. Some of the background art pertaining to this invention are shown below.
Certain taxane derivatives with modifications at the C-4 hydroxy group have been described in the art.
U.S. Pat. No. 5,808,102 to Poss et al and PCT published patent application WO 94/14787 contain descriptions of taxane analogs with modifications at the C-4 positions.
Gunda I. Georg et.al describe the synthesis of a C-4 ester analog in
Tetrahedron Letters
, 1994, 35(48) 8931-8934.
S. Chen et. al. describe the synthesis of a C-4 cyclopropyl ester analog in
Journal of Organic Chemistry
1994, 59(21), 6156-8.
U.S. Pat. No. 5,840,929 to Chen, Shu-Hui covering the C4 methoxy ether derivatives has issued on Nov. 24, 1998. A publication on the same topic has appeared:
Chen, Shu-Hui. First syntheses of C-4 methyl ether paclitaxel analogs and the unexpected reactivity of 4-deacetyl-4-methyl ether baccatin III.
Tetrahedron Lett
. 1996, 37(23), 3935-3938.
The following reference discusses a number of C-4 ester or carbonate analogs: Chen, Shu-Hui; Wei, Jian-Mei; Long, Byron H.; Fairchild, Craig A.; Carboni, Joan; Mamber, Steven W.; Rose, William C.; Johnston, Kathy; Casazza, Anna M.; et al. Novel C-4 paclitaxel (Taxol) analogs: potent antitumor agents.
Bioorg Med. Chem. Lett
. 1995, 5(22), 2741-6.
The preparation of C-4 aziridinyl carbamate analogs has been described in: Chen, Shu-Hui; Fairchild, Craig; Long, Byron H. Synthesis and Biological Evaluation of Novel C-4 Aziridine-Bearing Paclitaxel (Taxol) Analogs.
J. Med. Chem
. 1995, 38(12), 2263-7.
The following papers describe reactions or transformations which are described as of potential for c-4 analog preparation:
A new method to modify the C-4 position of 10-deacetylbaccatin III. Uoto, Kouichi; Takenoshita, Haruhiro; Ishiyama, Takashi; Terasawa, Hirofumi; Soga, Tsunehiko.
Chem. Pharm. Bull
. 1997, 45(12), 2093-2095.
Samaranayake, Gamini; Neidigh, Kurt A.; Kingston, David G. I. Modified taxols, 8. Deacylation and reacylation of baccatin III.
J. Nat. Prod
. 1993, 56(6), 884-98.
Datta, Apurba; Jayasinghe, Lalith R.; Georg, Gunda I. 4-Deacetyltaxol and 10-Acetyl-4-deacetyltaxotere: Synthesis and Biological Evaluation.
J. Med. Chem
. 1994, 37(24), 4258-60.
Inspite of the abovementioned examples of C-4 analogs or methodology to prepare them, no evidence of orally active C-4 analogs has been supplied. Both TAXOL® and TAXOTERE® have no oral activity in human or animal models as mentioned in the following prior art described below on taxanes and oral modulators. Thus, the art to date does not suggest that C-4 taxanes should be different than other taxanes and therefore they should not be orally active. To the best of our knowledge, the art in no way specifically identifies any C-4 analogs which may have oral utility. The invention described in this patent application identifies novel C-4 analogs which due to their unique s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

C-4 carbonate taxanes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with C-4 carbonate taxanes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and C-4 carbonate taxanes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3364949

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.