Bypass valve for water treatment system

Fluid handling – Systems – Multiple inlet with multiple outlet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S599150, C137S625290

Reexamination Certificate

active

06347644

ABSTRACT:

BACKGROUND
The present invention relates to a bypass valve for use with a water treatment system, and more particularly, to a multi-functional bypass valve.
Bypass valves for use with water treatment systems, such as filters and softeners, for example, are known in the art, and generally are formed as a housing which includes an adjustable valve therein. By adjusting the valve, one of two basic flow configurations can be selected. In the “service” configuration, the bypass valve merely conveys untreated water from a household or commercial supply line to the treatment system and conveys treated water exiting the treatment system to a pipe adapted for same. In the second, or “bypass,” configuration, untreated water enters and exits the bypass valve whereas flow to and from the treatment system is blocked. A bypass valve provides a convenient way to divert water from the treatment system, which is desirable, for example, when untreated water is needed, when the system is leaking or otherwise malfunctioning, or when routine maintenance is being performed on the system.
For example, U.S. Pat. No. 4,972,877 to Halemba et al. discloses a bypass/diverter valve including four conduits extending from a cylindrical valve chamber into which three spaced ports open. Within the chamber is a rotatable plug whose rotation selectively communicates flow through the conduits. Flow through the valve may optionally be crossed over the assembly through the valve, such that the function of the inlet and outlet conduits of the bypass may be interchanged without requiring repositioning of the bypass.
U.S. Pat. No. 5,152,321 to Drager et al. discloses a bypass valve in which the valve body consists of an open-ended cylinder with two pairs of ports extending perpendicularly from the longitudinal axis of the cylinder. A valve element is rotatably and slidably received into the cylindrical valve body and is provided with a lever to rotate the valve between bypass and service positions. While in the bypass position, the valve element may be axially shifted within the cylinder to allow flow from one of the ports of the first pair with one of the ports of the second pair. In such a position, the treatment tank can be pressurized from the supply line while in the bypass position.
Another known bypass assembly is formed from a unitary housing and includes one conduit adapted to transport untreated water to the inlet of a treatment tank and a second conduit adapted to transport treated (or untreated) water from the outlet of the treatment tank to a supply line adapted for same. Rotatable valves are disposed in-line with each of the first and second conduits. A third conduit formed in the housing fluidly connects the first and second conduits when the two valves are positioned in the “bypass position,” thereby allowing water to be channeled from the first conduit to the second conduit, bypassing the inlet and outlet of the treatment system. The manufacturing process of this known bypass assembly unavoidably results in a hole being formed in the housing coinciding with the end of the third conduit. A cap is secured to and fluidly seals this opening. One known bypass embodying this arrangement includes the cap being mechanically or chemically bonded to the housing, and the cap cannot be removed from the housing without destroying the bypass assembly.
One problem with known water treatment systems that is not addressed by the art described above nor other prior art water treatment systems known to applicant is that the water supply may occasionally fail, for example, when a water line is being serviced at a lower elevation than that of the treatment system. In such event, a vacuum may be created in the supply line, which in turn is communicated to the water treatment system, which further in turn may cause the treatment tank of the softener to buckle or “cave in” from the vacuum created therein. That is, the side wall of the media tank is sucked in, which causes a crease in the tank liner and the reinforced shell. When the treatment tank is later re-pressurized, it may leak or rupture. A deep set well pump that fails could create a similar problematic vacuum in the supply line. This is an obviously undesirable situation which usually requires costly replacement of the tank and media.
Another problem not addressed by prior art devices known to Applicant is that prior art water treatment systems must usually be disconnected from the incoming and outgoing lines, or the bypass valve must be disconnected, before chemicals can be added to the tank or before treated and/or untreated water can be sampled at the location of the water treatment system.
Yet another problem with known bypass valves is their lack of versatility generally. That is, known bypass valves provide one function, to bypass the treatment tank, nothing more.
What is needed is a water treatment system that addresses the above-noted problems and shortcomings of prior art bypass valve assemblies.
SUMMARY OF THE INVENTION
The present invention provides a multi-functional bypass assembly that includes a unique auxiliary port which in one embodiment is capable of relieving vacuum drawn on a water treatment system tank caused by a water supply failure. In other embodiments, the inventive bypass assembly also provides easy access thereto for sampling treated or untreated water, adding chemicals to the treatment system, and monitoring the pressure in the input and output lines extending from the treatment system.
In one form thereof, the present invention provides a water treatment system including an inlet adapted to receive untreated water, a treatment tank, an outlet adapted to dispense treated water (or untreated water in the event the treatment system is regenerating) and a bypass assembly removably connected to the inlet and outlet. The bypass assembly comprises a housing having a first opening adapted to receive the untreated water, a second opening adapted to dispense the treated water and an auxiliary port which comprises a third opening. At least one valve is disposed in the housing and is movable to a service position and a bypass position. When the at least one valve is positioned in the service position the housing defines a first fluid passage extending from the first opening through the at least one valve to the inlet and a second fluid passage extending from the outlet through the at least one valve to the second opening. Thus, when the at least one valve is positioned in the service position, the untreated water can be communicated from the first opening to the inlet and the treated water can be communicated from the outlet to the second opening. Further, when the at least one valve is positioned in the bypass position, the housing defines a third fluid passage extending from the first opening through the at least one valve to the second opening, the first and the second fluid passages being blocked in the bypass position. Thus, when the at least one valve is positioned in the bypass position the bypass valve assembly diverts the untreated water from the treatment tank. The bypass assembly further comprises a fourth fluid passage disposed in the housing, the fourth fluid passage extending from the third opening to the first opening. The fourth fluid passage is open when the at least one valve is positioned in the bypass position and the service position. A fitting is attached to the auxiliary port, whereby the auxiliary port may be used for a plurality of functions.
In a preferred form, the fitting comprises a check valve which is oriented to allow fluid flow into the third opening, whereby vacuum drawn on the first opening can be drawn into the third opening and through the check valve. In another preferred form, the fitting comprises a threaded fitting. Such a threaded fitting can be used to attach a boiler drain thereto to take a water sample, for example.
In another preferred form, the at least one valve comprises a cylindrical member which is rotatably disposed in a cylindrical bore disposed in the housing. The cylindrical bore has a pair

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bypass valve for water treatment system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bypass valve for water treatment system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bypass valve for water treatment system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2957969

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.