Bypass sub

Wells – Valves – closures or changeable restrictors – Longitudinally movable operator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S321000, C137S115080

Reexamination Certificate

active

06263969

ABSTRACT:

S
TATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not Applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
The primary use of this invention is in the field of equipment used in conjunction with downhole mud motors in the drilling of oil and gas wells.
2. Background Information
In many applications, an oil or gas well is drilled with a fluid driven motor, called a mud motor, which is lowered into the well bore as drilling progresses. The mud motor is affixed to the lower end of a drill pipe. Drilling fluid, or mud, is pumped down through the drill pipe by pumps situated at the surface of the earth, at the drill site. The drilling fluid pumped downhole through the drill pipe passes through the mud motor, turning a rotor within the mud motor. For a given mud motor, there is an optimum mud flow rate, and minimum and maximum allowable mud flow rates. The rotor turns a drive shaft which turns a drill bit, to drill through the downhole formations. Similarly, a milling tool can be affixed to the mud motor, instead of a drill bit, for milling away metal items which may be found downhole. After passing through the mud motor, the drilling fluid, or at least a portion of it, typically passes on through the drill bit or milling tool. After exiting the drill bit or milling tool, the drilling fluid passes back up the well bore, in the annular space around the drill string.
As the drill bit turns and drills through the formation, it grinds, tears, or gouges pieces of the formation loose. These pieces of the formation, called cuttings, can vary in size from powdery particles to large chunks, depending upon the type of formation, the type of drill bit, the weight on bit, and the speed of rotation of the drill bit. Similarly, as a milling tool turns, it removes metal cuttings from the metal item being milled away or milled through. As the drilling fluid exits the drill bit or milling tool, it entrains the cuttings, in order to carry the cuttings back up the annulus of the well bore to the surface of the well site. At the surface, the cuttings are removed from the drilling fluid, which is then recycled downhole.
Depending upon the type of formation, the drilling depth, and many other factors, the drilling fluid used at any given time is designed to satisfy various requirements relative to the well drilling operation. One of the prime requirements which the drilling fluid must satisfy is to keep the cuttings in suspension and carry them to the surface of the well site for disposal. If the cuttings are not efficiently removed from the well bore, the bit or milling tool can become clogged, limiting its effectiveness. Similarly, the well bore annulus can become clogged, preventing further circulation of drilling fluid, or even causing the drill pipe to become stuck. Therefore, the cuttings must flow with the drilling fluid uphole to the surface. Various features of the drilling fluid are chosen so that removal of the cuttings will be insured. The two main features which are selected to insure cutting removal are drilling fluid viscosity and flow rate.
Adequate viscosity can be insured by proper formulation of the drilling fluid. Adequate flow rate is insured by operating the pumps at a sufficiently high speed to circulate drilling fluid through the well at the required volumetric velocity and linear velocity to maintain cuttings in suspension. In some circumstances, the mud flow rate required for cutting removal is higher than the maximum allowed mud flow rate through the mud motor. This can be especially true when the mud motor moves into an enlarged bore hole, where the annulus is significantly enlarged. If the maximum allowed flow rate for the mud motor is exceeded, the mud motor can be damaged. On the other hand, if the mud flow rate falls below the minimum flow rate for the mud motor, drilling is inefficient, and the motor may stall.
In cases where keeping the cuttings in suspension in the bore hole annulus requires a mud flow rate greater than the maximum allowed mud flow rate through the motor, there must be a means for diverting some of the mud flow from the bore of the drill string to the annulus at a point near, but just above, the mud motor. This will prevent exceeding the maximum mud flow rate for the mud motor, while providing an adequate flow rate in the annulus to keep the cuttings in suspension.
Some tools are known for this and similar purposes. Some of the known tools require the pumping of a ball downhole to block a passage in the mud flow path, usually resulting in the shifting of some flow control device downhole to divert drilling fluid to the annulus. Such tools usually suffer from the disadvantage of not being returnable to full flow through the mud motor, in the event that reduced mud flow becomes possible thereafter. Other such tools might employ a fracture disk or other release means, with these release means suffering from the same disadvantage of not being reversible. At least one known tool uses mud pump cycling to move a sleeve up and down through a continuous J-slot to reach a portion of the J-slot which will allow increased longitudinal movement of the sleeve, ultimately resulting in the opening of a bypass outlet to the annulus. This tool suffers from the disadvantage that the operator must have a means of knowing exactly the position of the J-slot pin, in order to initiate bypass flow at the right time. Initiating increased flow when bypass has not been established can damage the mud motor, while operating at low flow when bypass has been established will lead to poor performance or stalling.
Therefore, it is an object of the present invention to provide a tool which will reliably bypass a portion of the drilling fluid to the annulus when a predetermined flow rate is exceeded, and which will close the bypass path when the flow rate falls back below a predetermined level. This will allow the operator to have complete control of the bypass flow by operation of the drilling fluid pumps at selected levels.
BRIEF SUMMARY OF THE INVENTION
The tool of the present invention includes a housing, within which is installed a slidable hollow mandrel. A bypass port is provided in the housing, between the inner bore of the housing and the annular space around the housing. A mandrel port is provided in the mandrel, between the inner bore of the mandrel and its outer surface. The hollow mandrel is biased toward the uphole direction by two springs stacked one upon the other. The uppermost spring has a lower spring constant than the lowermost spring. A nozzle is fixedly mounted in the bore of the hollow mandrel. The tool is affixed to the lower end of a drill string just above a mud motor. Compressible or incompressible fluid pumped down the drill string flows through the tool to the mud motor. As it passes through the tool, the fluid passes through the nozzle and through the hollow mandrel, and then on to the mud motor. The fluid used with the present invention can be either a liquid or a gas.
When the mandrel is in its upwardly biased position, all of the fluid flow passes through the mandrel and on to the mud motor. As the flow rate of the fluid is increased, the force on the nozzle increases, moving the hollow mandrel downwardly in the flow direction, against the bias of the two springs. After the upper spring is compressed, the mandrel acts against the increased resistance of the lower spring. At this time, the mandrel port begins to align with the bypass port in the housing, allowing a portion of the fluid flow to begin flowing into the annulus, bypassing the mud motor. As the flow rate is further increased by speeding up the pumps, the lower spring is further depressed by downward movement of the mandrel, which causes the mandrel port to allow more bypass flow through the bypass port. This maintains the flow rate through the mud motor below the maximum allowed level. If the flow rate is decreased, the mandrel moves upwardly, reducing the amount of the bypass flow and maintaining the mud motor flow rate in the optimal range.
The novel features of thi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bypass sub does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bypass sub, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bypass sub will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2512904

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.