Buoyantly propelled submerged canister for air vehicle launch

Ordnance – Rocket launching – Underwater launching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C089S001810

Reexamination Certificate

active

06286410

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to methods, apparatuses and systems for launching an object, more particularly for launching an object into the air from an underwater location.
A known methodology for launching a missile or projectile from a submerged location (such as a submarine or other submersible) involves implementation of an underwater launcher similar to a torpedo tube. The underwater launcher utilizes pressurized water to force the body from the launch tube.
Another conventional methodology similarly involves implementation of an underwater launch tube, but differs in respect to propulsion. This type of system effects ignition of a rocket motor while the body is situated in the launch tube. The rocket motor thrust is used to force the body out of the launch tube, through the water column and into the air.
Of particular note herein is another type of air vehicle, viz, a flying drone (also referred to as an “Unmanned Aerial Vehicle,” abbreviated “UAV”). Previously, U.S. agencies have tested and practiced the launching of UAVs from nonaqueous (e.g., land or above-water) locations. The U.S. Navy, for instance, has launched UAVs from topside locations such as ship decks; see, for example, Vogel, Steve, “Unmanned Navy Planes to Spread Wings for NATO,”
The Washington Post,
Monday, Apr. 12, 1999, page A19. The U.S. Navy is presently considering the use of the above-described known underwater-to-air launching methodologies for launching UAVs from submarines.
Among the disadvantages of the above-described conventional underwater-to-air launching methodologies are (i) the requirements associated with a submerged launcher, (ii) the noise generated by the launcher, and (iii) the complexity of the system.
SUMMARY OF THE INVENTION
In view of the foregoing, it is an object of the present invention to provide efficient method, apparatus and system for launching an air vehicle from a submerged location.
It is another object of the present invention to provide such method, apparatus and system which are suitable for launching a UAV from a submersible (especially, a submarine).
The present invention provides a unique methodology for launching an air vehicle into the air from a submerged location. The inventive underwater-to-air launch system affords reliable performance in a relatively quiet, quick, uncomplicated and inexpensive manner.
According to many embodiments of the present invention, inventive apparatus comprises a structure which, in association with the liquid buoyantly propelled upward movement of said structure, is characterized by a shape which at least substantially minimizes drag and at least substantially maximizes stability. In typical inventive practice, the inventive apparatus comprises means for sensing the pressure change associated with the desubmergence of at least a portion of the structure.
Many inventive embodiments provide a system for launching a vehicle from an aquatic environment to an aerial environment. The inventive launch system comprises: a canister for containing the vehicle, the canister being configured in furtherance of reducing drag and increasing stability in relation to the upward motivation of the canister by a buoyant force in the aquatic environment; a device for releasing the canister from a location in the aquatic environment, thereby permitting the upward motivation of the canister; and, a propulsor for propelling the air vehicle from the canister, subsequent to the transition of the canister from the aquatic environment to the aerial environment.
Many embodiments of this invention provide a method for launching an object from a site below the surface of a body of water. The inventive launch method comprises: enclosing the object in an enclosure; releasing the enclosure from the site, with the object enclosed, so that the enclosure is buoyantly impelled to rise toward, through and above the surface; sensing fluid pressure relating to the fluid external to the enclosure; and, propelling the object from the enclosure once the enclosure has risen above the surface.
In practicing this invention, it is generally preferred that the canister be a kind of pressure vessel. That is, the canister should be so constructed as to withstand ambient water pressure. In particular, the canister should be made to endure at least the greatest water pressure to which the canister can reasonably be expected to be subjected.
In typical inventive practice, the canister is attached to a submersible (such as a submarine) via restraint/release apparatus—and is attached in such a manner that the canister remains appropriately distanced from the submersible and is “free-floating.” Inventive practice generally dictates that the canister at least be able to withstand the ambient water pressure corresponding to the maximum water depth to which the canister will at any time be carried by the submersible.
The present invention can also be practiced, until the time of launch, whereby the canister is not in a free-floating condition while being connected to the submersible, but rather is itself enclosed and thereby isolated from the surrounding water. For example, such a “superenclosure” for the canister can have an upper hatch (e.g., at an upper end of the superenclosure) and a lower hatch (e.g., at a lower end of the superenclosure). The inventive practitioner(s) can gain access to the canister via the lower hatch. The canister is releasable so as to exit the superenclosure via the upper hatch. According to many such inventive embodiments, a restraint/release mechanism is provided within the superstructure. To inventively launch the canister, the superstructure is flooded. While the canister is inside the superstructure, the canister is released, whereupon the buoyant force on the canister inside the superstructure propels the canister upward and through the superstructure's upper hatch. Once the canister has exited the superstructure, the buoyant force on the canister continues to propel the canister upward in typical inventive fashion.
Generally, regardless of whether an inventive embodiment is of the “free-floating” kind or the “superenclosure” kind, the inventive principle obtains that the canister should at least be able to withstand the ambient water pressure corresponding to the maximum water depth to which the canister will travel. According to inventive “superenclosure” embodiments, the canister will be subjected to an aqueous ambience at a depth no greater than the actual launch depth; hence, the canister must withstand the ambient water pressure existing at launch depth. According to inventive “free-floating” embodiments, the canister may be subjected to an aqueous ambience at depths no greater than the actual launch depth; hence, the canister must withstand the ambient water pressure existing at these greater depths. However, as a practical matter, many inventive “free-floating” embodiments do not cause the canister to be subjected to an aqueous ambience at a depth greater than the actual launch depth.
Selection of the material composition of the canister may vary in accordance with the particular inventive application. Most inventive embodiments will provide a canister made of a metal material (e.g., steel, titanium, aluminum and/or another metal) or a composite material (e.g., a fiber-reinforced matrix material), or some combination thereof. The three main components of many inventive canister embodiments are the cylindrical body, the nose cone and the stabilizers (e.g., fins)—each of which can be composed of metal material and/or composite material.
A typical arrangement of a fiber-reinforced matrix material is one which comprises a resin (such as an epoxy resin) and fiberglass material (such as a fiberglass mat) which is disposed within the resin. Glass-reinforced plastic (abbreviated “GRP”), for instance, is a type of fiber-reinforced matrix material with which ordinarily skilled artisans are well acquainted.
Usually, this invention will require that the canister be reinforced, in order to be able to withstand the anticipat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Buoyantly propelled submerged canister for air vehicle launch does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Buoyantly propelled submerged canister for air vehicle launch, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Buoyantly propelled submerged canister for air vehicle launch will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2487420

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.