Hydraulic and earth engineering – Diving – Suit or accessory therefor
Reexamination Certificate
2001-07-26
2003-03-04
Morano, S. Joseph (Department: 3617)
Hydraulic and earth engineering
Diving
Suit or accessory therefor
C441S088000, C441S106000
Reexamination Certificate
active
06527480
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to buoyancy compensating devices used in underwater diving. In particular, the present invention relates to systems for containing and allowing selective release of weight to adjust buoyancy provided by the system.
BACKGROUND OF THE INVENTION
A buoyancy control device, more commonly known as a buoyancy compensator, is a standard piece of equipment used by scuba divers to help offset changes in buoyancy during the course of a dive. The buoyancy of a scuba diver during a dive can depend on a number of factors, such as the weight of the diver, the weight of the equipment carried by the diver, the depth of the dive, the temperature of the water, and numerous other factors. Consequently, the buoyancy of the diver can vary significantly during the course of a dive or between dives. A buoyancy compensator helps to offset these changes in buoyancy, thereby making it easier for the diver to maintain or achieve a desired depth. In addition to allowing fine tuning of buoyancy while the diver is underwater, a good buoyancy compensator allows easy surface swimming, stowing of small accessories, and organization of hoses and alternate gas sources. It also helps the diver to streamline his equipment by providing storage pockets and instrument attachment points.
A buoyancy compensator is typically a vest-like harness that is worn around the diver's torso. It generally includes four major elements: a weighting or weight system, an adjustable gas cell, a means of securing a gas tank, and storage pockets. The weighting system is typically made up of lead weights that are attached about the waist of the diver on a weight belt or contained within pockets mounted at the side panels of the buoyancy control device. The weighting system is used to overcome the buoyancy force exerted on the diver by the water, which then allows the diver to sink. In emergency situations, the weights of the weighting system are removed and dropped such that the diver quickly ascends.
The gas cell performs a function opposite to that of the weighting system. It is used to increase the buoyancy force exerted by the water, which offsets the negative forces exerted by the weight of the diver and his equipment, thereby assisting the diver to float towards the surface. Inflating the gas cell increases the buoyancy force acting on the diver, and can be done by connecting the gas cell to the gas tank via a valve and a hose and allowing the compressed gas in the gas tank to fill the gas cell, or it can be done by orally inflating the cell by blowing into a hose connected to the gas cell. The weighting system and the gas cell can also be used together to create a condition of equilibrium that allows the diver to maintain a desired depth. The means of securing a gas tank is used to prevent the gas tank from shifting or moving relative to the diver. This helps to ensure a more controlled dive, especially in tight quarters. Pockets are also included in buoyancy compensators because divers need storage compartments for a variety of reasons.
Those weighting systems which utilize pockets along the side panels of the buoyancy control device to contain weights come in a variety of configurations. Many weighting systems employ upwardly facing pockets to contain the weights or to contain pouches containing the weights. Although easy to load, such pockets are difficult to unload. Other weighting systems employ downwardly oriented pockets or sideways oriented pockets in which pouches containing weights are positioned. Such pouches are usually releasably retained within the pocket by means of a hook and loop fastener (VELCRO). In an emergency situation, the pouches containing the weights are removed and released by simply separating the hook and loop components of the hook and loop fastener, allowing the weight pouch to be removed from the pocket and to be dropped such that the diver immediately ascends. In other instances, the pouches and the weights are removed from the pocket and handed to a diving instructor or to another individual on a watercraft to allow the diver to more easily exit the water and board the watercraft.
Although such weight systems employing sideways or downwardly oriented pockets containing weight carrying pouches are generally preferred over upwardly oriented pockets, such weighting systems have several drawbacks. First, complete insertion of the weight containing pouch into the pocket is many times difficult due to gravity and friction between the pouch and the interior of the pocket. However, incomplete insertion of the weight pouch into the pocket results in the buoyancy control device being improperly configured which creates discomfort to the user wearing the buoyancy control device and instability. Moreover, incomplete insertion and securement of the weight pouch into the pocket may result in the hook and loop fastener becoming accidentally disconnected and may result in the pouch accidentally becoming dislodged from the pocket as a result of the repeated reciprocation of the weight pouch in the pocket.
Once the user is in the water, it is often easier for the user to readjust the position of the weight pouch in the pocket. Such readjustment generally requires that the hook and loop fastener be disconnected so as to allow the weight pouch to be more completely inserted into the weight pocket. Unfortunately, disconnection of the hook and loop fastener securing the weight pouch to the weight pocket while the user is in the water frequently results in the weight pouch being accidentally dropped and lost.
A second disadvantage associated with such existing weighting systems employing sidewards or downwardly oriented pockets and weight pouches is that such systems are difficult to operate in time critical situations and have durability concerns. In particular, the hook and loop fasteners commonly employed to secure the weight pouches in the weight pockets are susceptible to wear over time and have limited strength. As a result, the weight pouches may fall out of the pockets. The use of other connectors generally requires multiple steps or hand manipulations to disconnect the weight pouches from the pockets. In many underwater diving situations, the user simply does not have time or the required dexterity to perform such multiple steps to release the pouches from the pockets. The multiple steps necessary to release the pouches from the pockets is often made more difficult by the movement retarding thick wetsuit or drysuit worn by the diver.
Thus, there is a continuing need for a buoyancy control device and a weighting system for a buoyancy control device that: (1) enables a weight pouch to be completely inserted into the weight pocket without the risk of the weight pouch being accidentally dropped, (2) that more durably secures the weight pouch to and within the weight pocket, and (3) that enables the user to quickly and easily release the weight pouch from the weight pocket in few steps or hand manipulations and without the risk of the weight pouch being unintentionally dropped.
SUMMARY OF THE INVENTION
According to one embodiment, a buoyancy control system includes an apparel unit adapted to be worn by a diver. The apparel unit includes a front panel, a pocket along the front panel having an interior and exterior surface defining an opening communicating with the interior. The system further includes a weight pouch configured to hold at least one weight and removably received within the interior of the pocket, a first connector portion coupled to the weight pouch, a second connector portion releasably coupled to the first connector portion and an elastic member having a first portion coupled to the apparel unit and a second portion coupled to the second connector. The member biases second connector portion away from the first connector portion such that the band pulls the second connector portion away from the first connector portion upon release of the first and second connector portions.
According to another embodiment, a buoyancy control system includes a
Angelini Sergio A.
Carmichael Robert M.
Foley & Lardner
Johnson Outdoors Inc.
Morano S. Joseph
Vasudeva Ajay
LandOfFree
Buoyancy compensator weight system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Buoyancy compensator weight system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Buoyancy compensator weight system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3048597