Built-in spacers for liquid crystal on silicon (LCOS) devices

Liquid crystal cells – elements and systems – Particular structure – Having significant detail of cell structure only

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C349S113000, C349S156000

Reexamination Certificate

active

06642987

ABSTRACT:

TECHNICAL FIELD
This disclosure relates generally to fabrication of optical devices, and in particular but not exclusively, relates to fabrication and placement of spacers in an optical projection device, such as a device having liquid crystal on silicon (LCOS) light modulators.
BACKGROUND
LCOS devices, such as LCOS light modulators, are an important component of an optical projection system. LCOS devices, typically embodied in chips for use as “micro-display screens,” can eventually substitute for cathode ray tubes (CRTs) for a monitor or for a television.
One of the important parameters for a high quality LCOS device is the uniformity of the cell gap (sometimes referred to as the “cell spacing”) in the LCOS device (e.g., the LCOS “cell”). In an LCOS device, the cell gap is the space between the upper and lower substrates of the device, with the liquid crystal material being contained within the cell gap. For liquid crystal displays (LCDs), the upper and lower substrates are typically made from a glass material. For LCOS devices, the upper substrate is made from glass, and the lower substrate is made from silicon.
It is common knowledge that a consistency in the thickness and/or uniformity of the liquid crystal material within the cell gap must be achieved in order to obtain a high-quality optical image on the screen. If there is non-uniformity, then colors that should be red may suffer a discernible color shift, for instance, in the display. Spacers are used to help achieve this uniformity—the spacers act as a structural support between the upper and lower substrates to keep the cell gap between the substrates uniform in thickness.
In the manufacturing of LCDs, the practice is to apply spacers having sizes of 3-5 microns in width (either through a wet or dry process) within the cell by spraying the spacers onto the lower substrate, before coupling on the upper substrate with gasket material to form a hermetic seal. Thereafter, liquid crystal is deposited in the cell gaps formed between the spacers and the substrates, via use of vacuum processes.
This spacer manufacturing technique, however, produces unsatisfactory results for LCOS devices. This is because while human eyes cannot gauge actual sizes of the spacers, the spacers sprayed on a small LCOS chip will be enlarged hundreds of times in the projection image. The spacers create “dead spots” in the resulting image. The spacers become so obvious that the resulting image is undesirable, and the LCOS product will not sell well in the marketplace.
Because the visible spacers in the viewing area degrade from the quality of the LCOS device, many commercially available LCOS devices are fabricated without spacers (e.g., are “spacerless”). However, this process is not a guarantee for quality or yield—because with larger size variations of silicon substrates or with thinner cell gaps, it is mechanically difficult to support constant spacing uniformity when coupling two large substrates. In fact, this can become a serious issue if yield is significantly reduced due to the higher number of LCOS devices that will need to be discarded for having poor uniformity.
To alleviate this problem for LCOS devices, techniques using inherited built-in spacers have been used. Such inherited built-in spacers are formed by etching SiO
2
spacers on the silicon substrate itself. However, while the resulting structure does achieve uniformity of the cell gap and thus uniformity of the image quality, the spacers are too glaringly obvious as viewers pay more attention and get closer to the image. In other words, the spacers are relatively large in size and are often formed on each and every pixel in many types of LCOS cells, and as a result, become very visible when the image is magnified. The individual image generated from each cell is peppered with “dead spots” caused by the spacers in that cell, and these dead spots become much more pronounced when a composite/combined image is obtained from individual images from multiple cells, since the dead spots exactly overlap/superimpose over each other in the combined image.
Attempts to address this dilemma include fabrication of cells where the spacers are not formed on every pixel—the overall number of spacers is reduced. However, the spacers that are formed are nevertheless formed in the same pixel location on every cell. Thus, while the overall number of dead spots that “pepper” the original image may be reduced, the severity of the dead spots from the existing spacers remains unchanged, since the combined image still exactly superimposes and combines the dead spots from each cell. The overall image quality is therefore still unacceptable.


REFERENCES:
patent: 5764324 (1998-06-01), Lu et al.
patent: 5978063 (1999-11-01), Crawford et al.
patent: 6040888 (2000-03-01), Masami et al.
patent: 6124912 (2000-09-01), Moore
patent: 6140988 (2000-10-01), Yamada
patent: 6317188 (2001-11-01), Shibahara
patent: 6429921 (2002-08-01), Chen et al.
patent: 6437847 (2002-08-01), Kishimoto
patent: 6459468 (2002-10-01), Shibahara

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Built-in spacers for liquid crystal on silicon (LCOS) devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Built-in spacers for liquid crystal on silicon (LCOS) devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Built-in spacers for liquid crystal on silicon (LCOS) devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3141209

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.