Built-in self test for integrated digital-to-analog converters

Coded data generation or conversion – Analog to or from digital conversion – Digital to analog conversion

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C341S120000, C341S145000

Reexamination Certificate

active

06320528

ABSTRACT:

FIELD OF THE INVENTION
The invention is generally related to integrated circuit device design and architecture, and in particular, to functionally testing a digital-to-analog converter (DAC).
BACKGROUND OF THE INVENTION
A digital-to-analog converter is essential in presenting the discrete (usually binary) signal results of digital computation, storage, or transmission, into the form of the value or magnitude of some characteristic of the signal for graphical display, audio sound reproduction, or the control of devices that operate with continuously varying quantities. Often, a digital-to-analog converter has multiple electrical inputs representing a parallel binary number and an output in the form of a voltage or current
The analog output of a digital-to-analog converter is generally proportional to the product of the digital input value and a reference value. In many applications, the reference is fixed, and the output bears a fixed proportion to the digital input. Thus, the relationship of the analog output is generally linear. In other applications, the reference, as well as the digital input, can vary. A digital-to-analog converter that is used in these applications is thus often referred to as a multiplying digital-to-analog converter.
Digital-to-analog converters in the past tended to be lumped-component electronic devices produced individually and individually calibrated and tested. The readily accessible construction of such digital-to-analog converters allowed comprehensive external test equipment, often general purpose laboratory equipment, to be connected to various test points. The calibration and testing generally relied upon a skilled human operator to vary the necessary digital inputs to the digital-to-analog converter and to monitor the analog outputs. Consequently, the manufacturing costs were relatively high given the expense in test equipment and labor costs for testing
Digital-to-analog converters were later constructed using integrated circuit technology, such as fabricating a quad DAC dual in-line package (DIP) integrated circuit. Economic savings were realized by including most or all of the necessary electronic circuits for each digital-to-analog converter in a single semiconductor integrated circuit. Testing remained feasible since each digital-to-analog converter included external pins as test points for the digital input and analog output. Moreover, programmable external test equipment became available to generate the digital inputs and to monitor the analog outputs.
However, some applications of digital-to-analog converters in more recent devices are difficult to test. For example, digital-to-analog converters are used in the design of analog-to-digital converters that employ feedback techniques, such as successive-approximation and counter-comparator types. In such applications, the digital-to-analog converter may not necessarily appear as a separate identifiable entity. Moreover, the numbers of digital-to-analog converters incorporated into a single semiconductor integrated circuit may be large. Consequently, adding external connections for external test equipment is often impractical. Even if external connections would be feasible in some applications, an economic cost is incurred in using external test equipment, due to the cost of the equipment itself as well as delays incurred in the production line due to the testing.
Consequently, fabricating testing capability into each integrated circuit device that has a digital-to-analog converter would be beneficial. Unfortunately, known external testing equipment generally relies on comprehensive and complex testing algorithms. Integrated circuit designs replicating such comprehensive testing would undermine, if not render completely impractical, the goal of testing digital-to-analog converters in a more economic fashion. Moreover, in some applications, comprehensive testing of a digital-to-analog converter is not warranted. For example, the design and/or manufacturing process may tend to have very little variation in performance of the digital-to-analog converter. As another example, the digital-to-analog converter is used in an application requiring modest performance and only a basic functionality test is required.
Therefore, a significant need exists in the art for a simplified approach to functionality testing of digital-to-analog converters, and in particular, an approach that may be suitable for integration into a semiconductor integrated circuit containing one or more digital-to-analog converters.
SUMMARY OF THE INVENTION
The invention addresses these and other problems associated with the prior art by providing a circuit arrangement and method that tests a digital-to-analog converter for functionality by detecting a non-monotonic condition. A non-monotonic condition for a digital-to-analog converter occurs whenever the change in analog output between two digital inputs in a montonic sequence has an opposite polarity to that expected. A monotonic sequence has a set of members that either consistently increase or decrease, but not both, in relative value.
Monotonic analog output responsive to a monotonic digital input characterizes proper operation of most digital-to-analog converters. As such, it has been found that testing for monotonicity adequately verifies performance in most instances for digital-to-analog converters.
Functionally testing for monotonicity allows for simpler test circuit arrangements than typical of complex, comprehensive external test equipment. Thus, such test circuit arrangements may be incorporated into an integrated circuit device. Therefore, some applications of such integrated circuit test circuit arrangements are suitable for built-in self testing, which can save time during manufacturing.
In one aspect consistent with the present invention, a test circuit arrangement for testing a digital-to-analog converter includes a digital code generator and a monotonicity comparator. The digital code generator produces first and second digital input codes that are operatively coupled to a digital input of the digital-to-analog converter. The first digital input code precedes the second digital input code in a monotonic sequence. The monotonicity comparator receives an analog output from the digital-to-analog converter and is configured to compare a second analog signal output by the digital-to-analog converter responsive to a second digital input code with a first analog signal output by the digital-to-analog converter responsive to the first digital input code. An indication is given in response to a non-monotonic transition found during the comparison.
In another aspect consistent with the invention, an integrated circuit includes a digital-to-analog converter, having a digital input and an analog output, and a self-test circuit arrangement to test the digital-to-analog converter. The self-test circuit arrangement includes a digital code generator configured to generate a monotonic sequence of digital input codes that includes first and second digital input codes. The first digital input code precedes the second digital input code in the monotonic sequence. The digital code generator is adapted to be operably coupled to the digital input of the digital-to-analog converter. The self-test circuit arrangement also includes a monotonicity comparator adapted to be operably coupled to the analog output of the digital-to-analog converter. The monotonicity comparator is configured to compare a second analog signal output by the digital-to-analog converter in response to the second digital input code with a first analog signal output by the digital-to-analog converter in response to the first digital input code, and to indicate a non-monotonic transition between the first analog signal and the second analog signal.
In yet another aspect consistent with the invention, a method for testing a digital-to-analog converter having a digital input and an analog input and included in an integrated circuit includes the step of generating a monotonic sequence of digital input codes that includ

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Built-in self test for integrated digital-to-analog converters does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Built-in self test for integrated digital-to-analog converters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Built-in self test for integrated digital-to-analog converters will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2612334

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.