Building assembly having standing seams with mounting...

Static structures (e.g. – buildings) – Lapped multiplanar surfacing; e.g. – shingle type – With fastener or anchor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S543000, C052S025000, C052S464000, C248S513000, C248S237000, C248S535000, C248S237000, C403S388000, C403S362000, C182S045000

Reexamination Certificate

active

06718718

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to an apparatus and associated method for controlling uplift of a metal roof and, more specifically, to a unitary mounting device positionable and securable to part of a raised portion or seam of a roof.
BACKGROUND OF THE INVENTION
Metal roofs formed by interconnected metal panels can be susceptible to uplift and tearing due to lifting forces caused thereon by blowing winds. Such wind blown metal panels can be hazardous to nearby people and property. For example, during particularly windy conditions, metal panels can detach or tear from the metal roof and injure passers-by. As such, and with the increased use of metal panels in building construction, there has been an increased need to address ways in which to simply and conveniently control the uplift of such metal roofs.
U.S. Pat. No. 5,222,340 to Bellem, issued Jun. 29, 1993, generally discloses a device for increasing uplift resistance of metal standing seam roofs. The device disclosed in Bellem includes a first elongate part having a head, a longitudinal recess beneath the head, a foot extending below the recess and a hole laterally extending therethrough, a second elongate part having a hole laterally extending therethrough and a mating surface opposing the recess and mating surface of the first elongate part, and a fastener for drawing the first and second elongate parts together, to confine the roof seam in the recess. The device disclosed in Bellem however, is not readily adaptable to certain raised seams, especially horizontal standing seams (i.e., seams that are oriented parallel to the roofing surface or a raised seam on a metal roof that protrudes primarily laterally in relation to the roof). In addition, securing the device of Bellem to raised portions on a roof is time consuming as the first and second elongate parts must both be positioned about the raised seam such that the holes extending laterally through the first and second elongate parts are aligned. Once aligned, a fastening device may be inserted through the holes in order to draw the first and second elongate mating parts together to confine the raised portion within the recess of the first elongate part. In this regard, the assembling a number of the devices of Bellem on a metal roof is a time and labor intensive task, which results in increased costs.
There has also been an increased need to address ways in which various building attachments can be interconnected with a metal panel surface. For instance, there is often a need to attach a sign to the face of a metal panel. Moreover, in the case of metal roofs, there is often a need to mount/secure various types of equipment thereon (e.g., fans, air conditioning units, walkways, signage, facades) via an appropriate frame. In addition, in various climates it may be desirable to position a snow retention device on a metal roof to control/inhibit/impede the movement of snow and/or ice down the pitch of the roof.
Sliding snow and/or ice from roofs can be hazardous to people, the surrounding landscape, property, and building components. For example, snow or ice sliding from a roof above an entryway may injure passers-by. Similarly, falling snow or ice can do damage to landscape features, such as shrubs, and property or building components, including automobiles or lower roofing portions. In addition, sliding snow or ice can shear off antennas, gutters or other components attached to a building roof or wall, thereby potentially causing a leak. The problem of sliding snow or ice is particularly experienced in connection with metal roofs, including raised seam roofs (e.g., standing seam), where there is relatively little friction between the roof and the snow or ice. As used herein, the term “raised seam roofs” includes roofs formed by a series of panels interconnected to define longitudinal, raised portions. It may therefore be desirable to provide a guard suitable for controlling movement of snow and/or ice across/along selected areas of such metal roofs.
Snow guard devices were initially developed for use on tile and shingle roofs. In one type of configuration for use on such roofs, an L-shaped brace has one leg which is fastened to the roof and another leg which projects upwardly from the roof. The fastening leg is typically nailed or screwed into the roof beneath a shingle or tile. By positioning and attaching a plurality of these braces to the roof in substantially linear fashion, linear bars may be positioned within/through one or more receiving areas of the respective upwardly projecting legs to provide a fence-like configuration for snow and/or ice retention. U.S. Pat. Nos. 97,316 to Rogers, issued Nov. 30, 1869, U.S. Pat. No. 106,580 to Hathorn, issued Aug. 23, 1870, U.S. Pat. No. 250,580 to Rogers, issued Dec. 6, 1881, and U.S. Pat. No. 756,884 to Parry, issued Apr. 12, 1904, are generally representative of this type of device.
A device which employs a similar structure to the above but which does not require the individual braces to actually be affixed to the roof is presented in U.S. Pat. No. 42,972 to Howe, issued May 31, 1864. In this case, the plurality of braces for receiving the linear bars are positioned on opposite sides of the roof and are interconnected by a harness assembly. By positioning the brace/bar assemblies on both sides of the roof, the snow retention device is presumably held in position.
Other snow retention devices for shingle or tile roofs have utilized a more unitary structure. For instance, U.S. Pat. No. 459,876 to Powers, issued Sep. 22, 1891, discloses a snow guard having two laterally displaced spikes which are driven into the roofing surface, with the interconnecting portion of the spikes having a generally V-shaped configuration which extends downwardly toward the roofing surface. U.S. Pat. No. 602,983 to Folsom, issued Apr. 26, 1898, discloses a device used with a tiled roofing surface having grooves formed such that the spikes or leg portions of the device may be positioned therein. An interconnecting portion between the spikes or legs in this instance incorporates a loop-like configuration.
Another snow retention device is the SNOWJAX™ snow guard which is believed to be the subject of U.S. Pat. No. 4,141,182 to McMullen, issued Feb. 27, 1979. This device comprises a plastic barrier having a generally L-shaped cross-section. The device can be installed by smearing the underside of the device with silicon intended to provide a weather seal, positioning the device against the roof surface, and attaching the device to the roof with screws such that the screws penetrate the roofing surface and become anchored into an underlying structural member. An adhesive may be used in place of the screws where desired.
The ThyCurb division of Thybar Corporation has also marketed a snow guard device for use on trapezoidal-type, standing seam roofs having 24 inch wide panels and is believed to be the subject of U.S. Pat. No. 5,152,107 to Strickert, issued Oct. 6, 1992. The device comprises a horizontal steel member which spans one panel width. The horizontal member is fixedly attached at ends thereof to mounting members which straddle the trapezoidal panel ribs. These mounting members are fastened to the panel ribs by screws.
There are a number of problems generally associated with one or more of the snow guard devices described above. First, such devices may cause the roof to leak. Many of the devices described above are attached to the roof by a screw, nail or other fastener which pierces the roofing surface. Such piercing of the roof can lead to undesired leakage due to inadequate sealing or shearing of the fastener by the forces exerted thereon by sliding snow and/or ice. In an attempt to prevent leakage, sealants and/or gaskets are often applied around the holes pierced through the roofing surface. However, these measures complicate installation and may not fully prevent leaks. Alternative methods for the attachment of snow guard devices to roofs such as adhesive bonding may fail to provide secure attachment and/or m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Building assembly having standing seams with mounting... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Building assembly having standing seams with mounting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Building assembly having standing seams with mounting... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3266903

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.