Buffing tools and methods of making

Abrading – Flexible-member tool – per se – Comprising fibers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C028S104000, C451S533000, C451S536000

Reexamination Certificate

active

06595843

ABSTRACT:

DISCLOSURE
This invention relates generally as indicated to a buffing tools and methods of making such tools, and more particulary to buffing tools having improved fabric or cloth greatly enhancing the efficiency, useful life, and productivity of the tool.
BACKGROUND OF THE INVENTION
Buffing tools probably are embodied most commonly in the form of a wheel. The wheel includes one or more discs or plates providing an arbor hole. The cloth or fabric is secured to and projects radially from the discs. The projecting edge of the fabric is the working face of the tool. Several layers or plys of fabric may be provided for each wheel and the fabric may be folded, bunched, puckered, or pleated so that the fabric edge zig-zags back and forth at the face, and the working face of the tool may be substantial axially wider than the discs or plates, from which the fabric projects.
The wheels may be stacked on arbors with or without spacers to form buffing rolls or units which are mounted to the required axial length. The rolls may be of substantial axial length.
Other forms of wheel buffs may be formed by wrapping or folding the fabric around a core ring to project radially outwardly with the folded portion of the fabric held by a clinch ring. The clinch ring may include teeth biting into the fabric radially beyond the core ring. The clinch ring may be secured to a core plate or disc, or may be stacked and clamped directly on arbors.
Some rotary or wheel buffs are made without the core plates and clinch rings. Each superimposed buff fabric layer is simply sewn together usually with annular rows of stitching around a central hole. In addition other sewing may be included. The wheel sections are aligned and clamped on arbors.
Another form of buff is that which is known as a flap wheel. The buff fabric in one or more layers is formed into flaps which are usually closely spaced and secured to a rotary hub. The edges of the flaps extend generally parallel to the axis of rotation of the hub in contrast to other wheel tools where the edge of the fabric extends generally circumferentially of the axis of rotation albeit irregularly.
Instead of the fabric being secured to wheels, discs, or hubs, the fabric may be secured to flexible belts to be trained about at least two pulleys, one of which is power driven.
Tools such as those described above are generally available from JacksonLea, a unit of Jason Inc. in Conover, N.C., USA and are sold under well known trademarks such as CHURCHILL® and JACKSON™.
The fabric of these power driven tools is of course the part of the tool which engages the work and the part of the tool which wears. The tools are rotated at variable speeds. Arbor and S.FM speed selection choices are a result of finishing considerations such as, part configuration, stock removal requirements, type of finish, heat generation, output requirements and others. The movement of the fabric over the work may create significant heat both in the work and in the fabric. It has been found generally that such heat can be deleterious to both. An exception is aluminum where high heat usually achieves best results. This is usually obtained by higher speeds and pressures.
Also, the fabric may be treated, or the treatment may be applied to the working face in bar, stick or spray (liquid) form, depending on the finish desired. The treatments used may vary widely depending on the material being buffed and the finish desired.
For example, buffing may have at least three classifications which are: cut-down buffing, for producing a preliminary smoothness; cut and color buffing for producing smoothness and some lustre; and color buffing for the production of high gloss or a mirror finish.
Other varieties of finishes may be provided. For example, a satin finish may include scratch brush, butler, satin, colonial, matte, antique, sanded finishes, and others.
Abrasives applied may vary widely from water and bran meal to rouges, Tripoli, to a wide variety of color compounds. Some are applied with grease sticks or bars, while others are greaseless. Regardless, excess heat may adversely affect the treatment and its application and makes it difficult to achieve the results desired.
One way the heat problem has been addressed is to use what is known as ventilated buffs. These are buffs which are constructed to obtain a cooling flow of air as the buff rotates. In some cases a liquid coolant may be used similar to machine tool operations, but this creates problems in circulation and filtration. Such systems are usually a costly mess.
As far as the cloth or fabric is concerned the efforts to reduce heat generation have logically followed efforts to produce a lighter more open fabric but this generally universally results in fabrics of less strength and less wear resistance. The fabric is after all the wear-away part of the tool. A new wheel may have less than 1 or more than 30 inches of projecting fabric. The worn wheel may be recycled by supplying it with new fabric, it can be used as a spacer ring in a buff roll, but more normally it is simply tossed or scrapped.
A wheel with too much wear creates productivity problems. The machinery has to be stopped and the wheel replaced with a new one. A replaced wheel may exhibit non-uniform buffing until the wheel has had a chance to break in or conform to the shape of the part. Wheel replacement becomes necessary when the finish is no longer satisfactory. Wheel diameter take off size varies greatly. All of this results in downtime and excessive tooling costs.
It would accordingly be desirable if buffing tools could be made with cool running fabric, yet with a fabric having significantly higher strengths and much higher wear resistance even where heat is desired providing longer more productive tool life, machine-up time and lower overall finishing costs.
SUMMARY OF THE INVENTION
It is a principal object of the invention to provide a buff which will not generate excessive heat adversely affecting the work, or treatments, or the buff itself, and which will have a substantially longer working life. Yet it is also important that the buff have good wear resistance in high heat application. It is also important that the fabric of the buff be light weight and yet have an exceptional mechanical strength. To achieve these ends the fabric should have a tensile strength in both the machine and cross direction of the fabric in excess of 650 N/50 mm according to DIN EN 29073/3. More remarkably the fabric may have a mechanical strength two or more times the minimum noted and for example in excess of 1,000 N/50 mm according to the noted DIN.
The fabric is made by a bow-tie hydroentanglement process using a selected topographical surface. The fibers of the non-woven fabric are carded to form a fairly thick fleece which then continuously passes over a moving belt or drum providing a selected topographical surface. On such surface the fleece is subjected to impingement by many minute jets of water. This compacts the fleece and tightly entangles the fibers in the topographical pattern. Excess water is vacuumed away from the interior of the belt or drum. The tightly compacted and entangled fiber is then removed from the belt of drum to pass through a drier and to be treated. The fabric in bolts or rolls is then fabricated into buffing tools, such as noted above. These tools may include a wide variety of wheels, wave ring buffs, finger buffs, contoured buffs, airway buffs, flap wheels, sewn buffs, spiral-roll buffs, stacked buff rolls, or flexible belts.
Even though the surface speed may be substantial, buffs of the present invention exhibit remarkable useful life with minimal generation of heat. Even where high heat is desired, the buff provides an extended useful life.


REFERENCES:
patent: 3122766 (1964-03-01), Peterson
patent: 3485706 (1969-12-01), Evans
patent: 3597887 (1971-08-01), Hall et al.
patent: 3991526 (1976-11-01), Frank et al.
patent: 5098764 (1992-03-01), Drelich et al.
patent: 5244711 (1993-09-01), Drelich et al.
patent: 5674587 (1997-10-01), James et al.
patent: 5674591 (1997-10-01)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Buffing tools and methods of making does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Buffing tools and methods of making, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Buffing tools and methods of making will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3065779

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.