Static structures (e.g. – buildings) – Means compensating earth-transmitted force – Cross bracing
Reexamination Certificate
2000-12-12
2004-12-07
Friedman, Carl D. (Department: 3635)
Static structures (e.g., buildings)
Means compensating earth-transmitted force
Cross bracing
C052S167100, C052S749100, C052S749100
Reexamination Certificate
active
06826874
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to buckling restrained braces used in buildings and steel structures and capable of absorbing vibration energy generated by an earthquake, wind power, etc.
2. Description of the Related Art
Japanese Examined Utility Model (Kokoku) No. 4-19121 discloses a buckling-constraining brace member in which an adhesion-preventive film is provided between a center axial member and a concrete member. Japanese Unexamined Utility Model (Kokai) No. 5-3402 discloses a buckling-constraining brace member wherein a steel-made center axial member is passed through a steel-made buckling-constraining member, and an adhesion-preventive film is placed between the surface of the center axial member and the buckling-constraining member. Japanese Unexamined Utility Model (Kokai) No. 5-57110 discloses a damping brace member wherein both ends of an intermediate member having a small cross section are each connectively and integrally jointed to one end of a side member having a large cross section, in series to form a steel-made center axial member, and the axial member is fitted in a constituent hollow buckling-constraining member. Japanese Unexamined Utility Model (Kokai) No. 5-57111 discloses a damping brace member having the same constitution as in Japanese Unexamined Utility Model (Kokai) No. 5-57110 and excellent in damping properties, durability and weatherability. Japanese Unexamined Patent Publication (Kokai) No. 7-229204 discloses that the stiffness and yield stress of a buckling-constraining brace member can be arbitrarily determined, and that the stress flow of the steel-made center axial member is improved. R. Tremblay et al. reported experimental result relate to buckling-constraining members in the 8th Canadian conference on Earthquake Engineering (cf. Seismic Rehabilitation of a Four-stored Building with a Stiffened Bracing System, published on, Jan. 19, 1999).
SUMMARY OF THE INVENTION
An adhesion-preventive film is provided between a buckling-constraining concrete member reinforced with a steel material and a steel-made center axial member for the purpose of preventing the steel-made center axial member from adhering to the concrete of the buckling-constraining concrete member. The following problems, about the adhesion-preventive film, arise. When the adhesion-preventive film is too thin, the film does not tolerate the expansion in the plate thickness direction of the steel-made center axial member caused by its axial deformation; on the other hand, when the adhesion-preventive film is too thick, it is incapable of constraining local buckling of the steel-made center axial member. Moreover the adhesion-preventive film has still other problems as mentioned below. When the stiffness in the thickness direction of the adhesion-preventive film is too low, it is incapable of maintaining a predetermined thickness due to the concrete pressure during pouring concrete; moreover, when the stiffness in the thickness direction thereof is too high, it cannot absorb the expansion in the plate thickness direction of the steel-made center axial member caused by the influence of Poisson's ratio at the time of plasticization, namely, plastic deformation of the steel-made center axial member.
When a plain steel (yield stress &sgr;
y
=235 N/mm
2
) is used for the steel-made center axial member of a buckling restrained brace, there arises a problem that the buckling restrained brace cannot be made to function as a hysteresis damper against an earthquake of a small magnitude because the steel-made center axial member does not yield at the early stage against a ground motion acceleration (80 to 100 gal) of the earthquake.
A steel-made center axial member of a buckling restrained brace having the same cross-sectional area from one end of the member, through the central portion, to the other end has the following problem. When the steel-made center axial member is made to function as a hysteresis damper, both ends as well as the central portion of the member are plasticized (plastically deformed) due to yielding, and consequently fracture at joints between the buckling restrained brace and a steel structure including a column and a beam takes place.
In the process of producing a buckling-constraining concrete member of a buckling restrained brace reinforced with a steel material, when the ends of the reinforcing steel material of a buckling-constraining concrete member are open, there arise problems as mentioned below. During pouring the concrete, the concrete flows out before its solidification, and pouring concrete becomes difficult; cracked concrete falls during the use of the buckling restrained brace. Furthermore, an adhesion-preventive film is placed between the buckling-constraining concrete member of the buckling restrained brace reinforced with the steel material and the steel-made center axial member for the purpose of preventing mutual adhesion between the axial member and the concrete member. Accordingly, the following problem arises. When the steel-made center axial member is axially deformed due to vibration generated by an earthquake or wind power, it is not definite in which of two directions, a direction towards one end of the steel-made center axial member and a direction towards the other end thereof, the buckling-constraining concrete member is moved, and the concrete member is deflected to one of the two ends when the concrete member starts to be moved.
When the buckling restrained brace is to be mounted on a damping steel structure, the buckling restrained brace is generally jointed with high tensile bolts. In jointing the buckling restrained brace, the following problem arises. When the axial tension of the steel-made center axial member increases, the number of bolts used significantly increases, and the buckling restrained brace cannot be fixing jointed unless both of its ends are extremely expanded. Moreover, the width of both ends of the buckling restrained brace cannot be increased much because the width is restricted by the widths of columns and beams of the damping steel structure on which the buckling restrained brace is to be mounted.
The buckling restrained brace has a problem that the steel-made center axial member cannot be made to function as a hysteresis damper for absorbing vibration energy of the micro-vibration of an earthquake of very small magnitude, wind power, etc., to which the steel-made center axial member does not yield.
When the steel structure is shaken by an earthquake of a large magnitude, part of the columns, beams and braces of the steel structure are plasticized. Even when they are plasticized, the steel structure does not collapse so long as they have a sufficient capacity of plastic deformation and sufficient resistant to fatigue. However, jointed portions and welded portions prepared by field fabrication tend to decline in quality compared with those prepared by factory production, and are sometimes fractured before performing a sufficient plastic deformation function. When these columns, beams and braces are plasticized, the steel structure is deformed, and there arises a problem that the steel structure must be repaired on a large scale if it is to be used after the earthquake.
The problems mentioned above are solved by a buckling restrained brace
1
according to the present invention wherein a steel-made center axial member
3
is passed through a buckling-constraining concrete member
2
reinforced with a steel member
6
, and an adhesion-preventive film
4
is provided to the interface between the steel-made center axial member and buckling-constraining concrete
5
, the adhesion-preventive film showing a secant modulus in the thickness direction of at least 0.1 N/mm
2
between a point which shows a compressive strain of 0% and a point which shows a compressive strain of 50%, and up to 21,000 N/mm
2
between a point which shows a compressive strain of 50% and a point which shows a compressive strain of 75%, and having a thickness d
t
in the plate thicknes
Hasegawa Hisami
Kimura Isao
Nakamura Hiroshi
Saeki Eiichiro
Takeuchi Toru
Friedman Carl D.
Kenyon & Kenyon
Nguyen Chi Q
Nippon Steel Corporation
LandOfFree
Buckling restrained braces and damping steel structures does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Buckling restrained braces and damping steel structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Buckling restrained braces and damping steel structures will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3313927