Buckling resistant piezoelectric actuator

Electrical generator or motor structure – Non-dynamoelectric – Piezoelectric elements and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06307301

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to piezoelectric support devices. More particularly, the invention relates to a piezoelectric actuator assembly that has an amplification arm which extends in an outboard direction with respect to an attached application structure.
BACKGROUND OF THE INVENTION
BACKGROUND ART
Piezoelectric materials have become more and more widely used in a large number of applications. For example, piezoelectric materials have the potential of allowing aircraft designers to minimize the number of required moving parts with high precision as well as increased compactness. Conventional piezoelectric materials, however, generally only work well in applications that require micro-displacement such as adaptive optics, printer jet control, pressure and acoustic transducers. It is therefore desirable to provide a system and method which is readily adaptable to application structures such as aircraft and automobiles which require large displacements (or strokes) under high loads. Such a system would gain widespread acceptance in both the aviation and automotive industries.
Due to the limited strain capability (i.e. elongation per unit voltage input) of piezoelectric materials, a number of piezoelectric segments are typically fixedly coupled or glued together to obtain a useful displacement. In addition to the piezoelectric stack material, a stack supporting component is typically employed to prevent the piezoelectric stack from becoming laterally, vertically, or rotationally unstable. An amplification arm is further included to couple the piezoelectric stack to an external load as well as magnify the displacement.
An infinitely stiff actuator assembly is desired because it directly effects the actuator assembly performance. In fact, surveys of piezoelectric actuators show that more than 50% of actuator assembly compliance is due to stack longitudinal stiffness. It is further known that the cross-sectional area of the piezoelectric stack determines the amount of longitudinal stiffness. It is therefore desirable to provide a piezoelectric actuator assembly that has a very large piezoelectric stack cross-sectional area.
Conventional piezoelectric actuator assembly designs have to accommodate the actuator assembly output displacement in addition to the cross-sectional area of the piezoelectric driver assembly. Therefore, as output displacement requirements increase, there is less space available for the stack cross-sectional area. Correspondingly, if the cross-sectional area of the piezoelectric driver assembly is increased, less output displacement is available. This shortcoming associated with conventional designs is largely due to the fact that typical approaches combine the stack supporting component with the amplification arm such that the two interfere with one another. It is therefore desirable to provide an actuator assembly that has an amplification arm extending in the outboard direction with respect to the attached application structure such that the piezoelectric driver assembly can have an increased cross-sectional area.
A further concern with aircraft, automotive, and other high-force applications is inboard mounting of the actuator assembly. For example, in helicopter rotor blade applications, it is desirable to minimize the effect of external loads due to blade “flapping” motions. Thus, fixing the internal mount in the lateral direction while establishing a nonlinear spring constraint in the axial and vertical directions would enhance aircraft performance and ultimately reduce costs.
Another problem associated with implementing piezoelectric actuators in particular, is the need to preload the piezoelectric stack material. This requirement is due to the fact that piezoelectric materials generally operate best under compression of the material. Therefore, to fully capture the displacement effectiveness of the piezoelectric material, the material should be preloaded to a point of slight compression. It is therefore desirable to provide a piezoelectric actuator assembly that is preloaded to improve displacement amplification and response time.
SUMMARY OF THE INVENTION
The above drawbacks are addressed by a piezoelectric actuator assembly in accordance with a preferred embodiment of the present invention having an amplification arm extending in the outboard direction with respect to an attached application structure. Specifically, the piezoelectric actuator assembly includes a piezoelectric driver assembly coupled to the application structure. The driver assembly also has a stack inboard end longitudinally extending in an inboard direction with respect to the application structure and a stack outboard end longitudinally extending in an outboard direction with respect to the application structure. The driver assembly has a longitudinal displacement in response to an applied voltage. The amplification arm has an arm outboard end coupled to a load and an arm inboard end. The piezoelectric actuator assembly further includes an outboard hinge mechanism rotatably coupling the arm inboard end of the amplification arm to the stack outboard end such that the arm outboard end extends in the outboard direction. Extending the amplification arm in the outboard direction therefore allows elimination of the interference between the cross-sectional area of the piezoelectric driver assembly and output displacement of the actuator assembly.
Further in accordance with the present invention, the driver assembly has a first piezoelectric stack and a second piezoelectric stack. The hinge mechanism includes an axis connection mechanism extending through the driver assembly and the amplification arm where the hinge mechanism is fixedly coupled to the application structure. A first stack joint is fixedly coupled to the first piezoelectric stack and moveably coupled to the amplification arm such that longitudinal displacement of the first piezoelectric stack in the outboard direction causes rotation of the amplification arm about the axis connection mechanism in a first output direction. A second stack joint is fixedly coupled to the second piezoelectric stack and moveably coupled to the amplification arm such that longitudinal displacement of the second piezoelectric stack in the outboard direction causes rotation of the amplification arm about the axis connection mechanism in a second output direction. The second output direction is generally opposite to the first output direction.
The present invention also provides a method for displacing a load. The method includes the step of longitudinally extending an inboard end of a piezoelectric driver assembly in an inboard direction with respect to an attached application structure. A stack outboard end of the piezoelectric driver assembly is extended in an outboard direction with respect to the application structure. The method further includes the step of generating longitudinal displacement of the driver assembly in response to an applied voltage. An outboard end of an amplification arm is coupled to the load, and an arm inboard end of the amplification is rotatably coupled to the stack outboard end. Thus, the arm outboard end extends in the outboard direction and allows maximization of the cross-sectional area of the piezoelectric driver assembly.


REFERENCES:
patent: 4547086 (1985-10-01), Matsumoto et al.
patent: 4601539 (1986-07-01), Watanabe
patent: 4905031 (1990-02-01), Mody
patent: 5490015 (1996-02-01), Umeyama et al.
patent: 5521764 (1996-05-01), Balogh et al.
patent: 5576894 (1996-11-01), Kuwana et al.
patent: 5675444 (1997-10-01), Ueyama et al.
patent: 5714833 (1998-02-01), Zumeris
patent: 5768038 (1998-06-01), Emura
patent: 5771095 (1998-06-01), Prikryl et al.
patent: 6188161 (2001-02-01), Yoshida et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Buckling resistant piezoelectric actuator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Buckling resistant piezoelectric actuator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Buckling resistant piezoelectric actuator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2562724

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.