Bucket tip clearance control system

Rotary kinetic fluid motors or pumps – Bearing – seal – or liner between runner portion and static part – Between blade edge and static part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C415S213100, C415S220000

Reexamination Certificate

active

06435823

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to land-based, i.e., industrial gas turbines and, more particularly, to a gas turbine bucket tip clearance control system including a flow circuit within a turbine outer shroud that controls a temperature of the outer shroud via a thermal medium.
Hot gas path components in gas turbines typically employ air convection and air film techniques for cooling surfaces exposed to high temperatures. High pressure air is conventionally bled from the compressor, and the energy of compressing the air is lost after the air is used for cooling. In current heavy duty gas turbines for electric power generation applications, the stationary hot gas path turbine components are attached directly to massive turbine housing structures, and the shrouds are susceptible to bucket tip clearance rubs as the turbine casing thermally distorts. That is, the thermal growth of the turbine casing during steady state and transient operations is not actively controlled, and bucket tip clearance is therefore subject to the thermal characteristics of the turbine. Bucket tip clearance in these heavy duty industrial gas turbines is typically determined by a maximum closure between the shrouds and the bucket tips (which usually occurs during a transient) and all tolerances and unknowns associated with steady state operation of the rotor and stator.
In some turbine designs, the stage 1 bucket is unshrouded because of complex aerodynamic loading and the stress carrying capability of the bucket. That is, the stage 1 bucket tip has no sealing mechanisms to prevent hot gas from flowing over the bucket tip. It is desirable to maintain a minimum clearance between the bucket tip and the turbine inner shroud so that an amount of hot gas flow that bypasses the turbine (and therefore is not expanded for work) is minimized.
BRIEF SUMMARY OF THE INVENTION
In an exemplary embodiment of the invention, a bucket tip clearance control system forms part of a turbomachinery apparatus including a casing, an outer shroud in a slip fit configuration with the casing, and an inner shroud coupled to the outer shroud. The tip clearance control system includes a flow circuit for a thermal medium, wherein the flow circuit defines a flow path within the outer shroud. A thermal medium source is provided in fluid communication with the flow circuit and delivers the thermal medium to the flow circuit in a predefined condition according to operating parameters of the turbomachinery apparatus, such as steady state operation and transient state operation. The temperature of the outer shroud is controlled according to the predefined temperature conditioning of the thermal medium.
Preferably, the outer shroud of the turbomachinery apparatus includes an upper half secured to a lower half at the horizontal engine split line. In this context, the flow circuit may include at least two cavities in the outer shroud, one of the cavities being disposed adjacent the split line. The flow circuit may include a first flow path within the upper half of the outer shroud and a second flow path within the lower half of the outer shroud. In this context, the flow circuit preferably includes at least two cavities in each of the first flow path and the second flow path, one of the cavities in each of the first and second flow paths being disposed adjacent the split line. In one arrangement, the flow circuit includes four cavities in the outer shroud. These cavities preferably communicate via at least one hole from cavity to cavity or via an array of metering holes from one cavity to another cavity.


REFERENCES:
patent: 4329114 (1982-05-01), Johnston et al.
patent: 4525998 (1985-07-01), Schwarz
patent: 5064343 (1991-11-01), Mills
patent: 5167488 (1992-12-01), Ciokajlo et al.
patent: 5212940 (1993-05-01), Glover
patent: 5219968 (1993-06-01), Johnson
patent: 5228828 (1993-07-01), Damlis et al.
patent: 5593274 (1997-01-01), Carreno et al.
patent: 5605437 (1997-02-01), Meylan
patent: 5667358 (1997-09-01), Gaul
patent: 5685693 (1997-11-01), Sexton et al.
patent: 5779436 (1998-07-01), Glezer et al.
patent: 5779442 (1998-07-01), Sexton et al.
patent: 5967743 (1999-10-01), Meylan
patent: 6082963 (2000-07-01), Sexton et al.
“39thGE Turbine State-of-the-Art Technology Seminar”, Tab 1,““F” Technology—the First Half-Million Operating Hours”, H.E. Miller, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 2, “GE Heavy-Duty Gas Turbine Performance Characteristics”, F. J. Brooks, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 3, “9EC 50Hz 170-MW Class Gas Turbine”, A. S. Arrao, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 4, “MWS6001FA—An Advanced-Technology 70-MW Class 50/60 Hz Gas Turbine”, Ramachandran et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 5, “Turbomachinery Technology Advances at Nuovo Pignone”, Benvenuti et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 6, “GE Aeroderivative Gas Turbines—Design and Operating Features”, M.W. Horner, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 7, “Advance Gas Turbine Materials and Coatings”, P.W. Schilke, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 8, “Dry Low NOxCombustion Systems for GE Heavy-Duty Turbines”, L. B. Davis, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 9, “GE Gas Turbine Combustion Flexibility”, M. A. Davi, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 10, “Gas Fuel Clean-Up System Design Considerations for GE Heavy-Duty Gas Turbines”, C. Wilkes, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 11, “Integrated Control Systems for Advanced Combined Cycles”, Chu et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 12, “Power Systems for the 21st Century “H” Gas Turbine Combined Cycles”, Paul et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 13, “Clean Coal and Heavy Oil Technologies for Gas Turbines”, D. M. Todd, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 14, “Gas Turbine Conversions, Modifications and Uprates Technology”, Stuck et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 15, “Performance and Reliability Improvements for Heavy-Duty Gas Turbines,”J. R. Johnston, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 16, “Gas Turbine Repair Technology”, Crimi et al, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 17, “Heavy Duty Turbine Operating & Maintenance Considerations”, R. F. Hoeft, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 18, “Gas Turbine Performance Monitoring and Testing”, Schmitt et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 19, “Monitoring Service Delivery System and Diagnostics”, Madej et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 20, “Steam Turbines for Large Power Applications”, Reinker et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 21, “Steam Turbines for Ultrasupercritical Power Plants”, Retzlaff et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 22, “Steam Turbine Sustained Efficiency”, P. Schofield, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 23, “Recent Advances in Steam Turbines for Industrial and Cogeneration Applications”, Leger et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 24, “Mechanical Drive Steam Turbines”, D. R. Leger, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 25, “Steam Turbines for STAG™ Combined-Cycle Power Systems”, M. Boss, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 26, “Cogeneration Application Considerations”, Fisk et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 27, “Performance and Economic Considerations of Repowering Steam Power Plants”, Stoll et al.,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bucket tip clearance control system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bucket tip clearance control system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bucket tip clearance control system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2920153

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.