Surgery – Diagnostic testing – Measuring anatomical characteristic or force applied to or...
Reexamination Certificate
1999-07-15
2001-08-07
Hindenburg, Max (Department: 3737)
Surgery
Diagnostic testing
Measuring anatomical characteristic or force applied to or...
Reexamination Certificate
active
06270466
ABSTRACT:
BACKGROUND
The invention relates generally to the fields of electromyographic monitoring and biofeedback, and more specifically to biofeedback devices and techniques for treating bruxism.
Bruxism has generally been defined as the nonfunctional clenching, grinding, gritting, gnashing, and/or clicking of the teeth. Bruxism can occur while a person is awake or asleep. When the phenomenon occurs during sleep, it is called nocturnal bruxism. Even when it occurs during waking hours, the bruxer is often not conscious of the activity. Biting force exerted during bruxism often significantly exceeds peak biting force exerted during normal chewing. Biting forces exceeding 700 pounds have been measured during bruxing events. Chronic bruxism may result in musculoskeletal pain, headaches, and damage to the teeth and/or the temporomandibular joint.
The primary treatment for nocturnal bruxism is the use of intra-oral occlusal splints or “mouth guards,” which are generally semi-rigid plastic covers for the upper or lower teeth. Occlusal splints are generally fabricated for a specific individual from an impression taken of the individual's teeth. While some studies have shown that the wearing of an occlusal splint may reduce bruxing event duration and intensity, the large replacement market for “chewed up” occlusal splints attests to the role of the splint primarily to protect teeth from damage, rather than as a cure for bruxism. Even as a symptomatic treatment, occlusal splints often only protect the teeth themselves, while the user may still suffer musculoskeletal pain and possible damage to the temporomandibular joint.
Occlusal splints present numerous inconveniences to the user. They require frequent cleaning, they are difficult to clean, they require periodic replacement, they inhibit speech, and they are frequently lost. For couples sleeping together, occlusal splints are far from “romantic.” Some users perceive that occlusal splints accelerate tooth decay.
Dental researchers and clinicians have made several attempts to address the underlying causes of bruxism through biofeedback. Most commonly, an electromyograph was used to sense the action of the masseter muscle. When muscle activity was detected, an audible tone was generated. This tone alerted the individual that he or she was bruxing. The intention of this biofeedback approach was that a relatively short period of treatment would result in the long-term elimination of the bruxing behavior. Most of the shorter studies indicated that bruxism resumed once the treatment was discontinued. One longer study offered some evidence of sustained reduction in bruxism with longer term use and decreasing frequency of use of the biofeedback apparatus. Because these previous attempts to use biofeedback devices involved bulky electronics and required electrodes to be attached adhesively to the face, they were impractical for long-term use in treating bruxism, and not well suited for consumer use.
Some variations on this biofeedback approach known in the art incorporate sensing means into an occlusal splint in order to sense the onset of bruxing. These approaches require the presence of electrical devices in the mouth, including, in many cases, batteries, which may contain highly toxic substances. The electrical and chemical health risks of these devices add to the general drawbacks of intra-oral splints described above. In addition, many of these attempts have resulted in bulky devices which would be even more uncomfortable for the user than traditional occlusal splints.
It is the object of this invention to provide a convenient, comfortable, reliable, effective, economical, aesthetically pleasing means of providing long-term biofeedback to treat bruxism. It is a further objective of this invention to provide a bruxism treatment means which does not interfere with normal daily activities. It is a further object of this invention to avoid the presence of occlusal splints or other foreign objects in the mouth of the user. It is a further object of the invention to avoid the adhesive attachment of electrodes to the skin of the user. It is a further object of this invention to provide a user-friendly means for clinicians and bruxers to gather comprehensive data on the occurrence of bruxing events including time, duration, and intensity data. It is a further objective of this invention to provide a means for treatment of bruxism (or gathering of data on bruxism) which is wearable as an attractive, unobtrusive, comfortable article of clothing, which does not interfere with normal activities. It is a further object of this invention to provide a reliable, robust bio-feedback mechanism which is readily perceived by the user while remaining relatively unnoticable to persons in the user's immediate surroundings.
SUMMARY OF THE INVENTION
The general approach of the invention is to sense bruxing by sensing the electrical activity of “obruxism muscles” (the temporalis and/or masseter muscles used to close the jaw). The electrical signal from the bruxism muscles is processed by an electronics module. When a threshold of intensity and duration is exceeded, a signal is generated to provide feedback to the user, indicating the onset of a bruxing event. Data (including time, duration, and intensity) may also be stored internally in response to a bruxing event. These data may be read out through connection to a personal computer, or via voice synthesis or a display.
In one embodiment of the invention, three sensing electrodes are mounted to the inside of a headband which is worn around the user's head above the ears. One of these electrodes (the sense reference electrode) contacts the user near the center of the forehead and provides a reference bias voltage to assure that the input voltage at the sense electrodes is within the linear measurement range of the input amplifiers. The presence of a third electrode also allows for maximum input impedance on the other two electrodes (the sense electrodes). The sense electrodes are mounted such that they contact the user's head near the temples. The voltage between the temple electrodes is amplified and filtered to yield a signal indicative of the tension in the fibers of the temporalis muscle. In another embodiment sensing primarily the temporalis muscle (shown in FIGS.
2
and
3
), the electrodes are implemented as the ear wires of a pair of eyeglasses (FIG.
4
H). An alternate implementation for sensing primarily the temporalis muscle is an around-the-ear clip or conductive rubber band as shown in
FIGS. 4F and 4G
.
The electrodes are held in contact with the skin by spring or elastic force, requiring no adhesives. The electrodes are preferably made from materials which are impermeable to water. Moisture naturally present in the user's skin builds up between the electrode and the user's skin in a short time, allowing the skin to become conductive enough for the device to work without the need for special chemicals to be applied to the electrodes. The “moisture build-up” time is usually between 20 seconds and 2 minutes, and can be reduced essentially to zero if the user's skin is wiped with something damp just before putting on the apparatus.
Two embodiments sensing primarily the masseter muscle signal are shown in
FIGS. 4A-4H
.
In one embodiment the electronics module amplifies the voltage between the temporal electrodes in the frequency range 200 to 600 Hz (the frequency range in which the temporalis muscle is most active), while attenuating 60 Hz to enhance immunity to interference from magnetic and electric fields generated by common household wiring and appliances. A preferred embodiment uses a 60 Hz notch filter with a Q greater than 10. When the sensed voltage exceeds certain time and amplitude criteria, the electronics module generates an alert signal. The alert signal is an audible tone in a piezoelectric transducer worn by the user, and the volume of the tone increases until the sensed bruxing ceases, or until a maximum volume is reached. If the piezoelectric transducer is wo
Burns Clay
Devlin Thomas E.
Ulrich Karl T.
Weinstein Lee
BruxCare L.L.C.
Hindenburg Max
Weissburg Steven J.
LandOfFree
Bruxism biofeedback apparatus and method including acoustic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bruxism biofeedback apparatus and method including acoustic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bruxism biofeedback apparatus and method including acoustic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2530758