Broadband radio access method, device and system

Telecommunications – Carrier wave repeater or relay system – Portable or mobile repeater

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S013100, C455S067700, C455S422100, C455S454000, C455S552100, C455S561000, C455S562100

Reexamination Certificate

active

06188873

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method, device and system for providing broadband radio access with a high degree of coverage and a high system capacity even in congested areas where obstacles to line-of-sight communications are present. More particularly, the present invention relates to a method, device and system for broadband radio access that includes a millimeterwave (ML) system segment integrated with a microwave (MK) system segment.
2. Discussion of the Background
Local Multipoint Distribution Service (hereinafter LMDS), Multipoint Video Distribution System (hereinafter MVDS) and High Capacity Point to Multipoint (hereinafter HPMP) are examples of ML systems, while Multipoint Microwave Distribution System (hereinafter MMDS) and terrestrial-based television (hereinafter terrestrial TV) systems are examples of microwave (MK) systems. ML systems operate as fixed point to multipoint radio systems at frequencies over 10 GHz. By having fixed high frequency systems over 10 GHz makes it possible for simple construction of cellular systems where very good frequency utilization factors (less than or equal to 1) can be achieved. Good frequency utilization allows for a larger amount of information to be transmitted over a predetermined bandwidth. Furthermore, ML systems also have the opportunity to operate at available, unused frequency bands over 20 GHz, which makes it possible to use such systems to achieve excellent system capacity that support broadband access for many subscribers.
As recognized by the present inventors, a problem with using frequencies above 10 GHz, is that the radiowave propagation between terminals is primarily achieved through line-of-sight (hereinafter LOS) communications. The communication channel at this frequency is obstructed with physical structures, which blocks the radiowaves. Such obstacles include buildings, trees, and foliage, or even terrain obstacles such as hills and naturally occurring obstructions. This LOS requirement has been verified at these frequencies by initial propagation measurements taken at Telia Research, as well as from Bellcore and Texas Instruments, for example. Developed urban areas as well as residential areas pose a problem for LOS communications, particulary for subscribers in low buildings surrounded by higher surrounding vegetation and buildings. Generally, even though the broadcast antenna from the ML base station may be elevated, the communication range is limited to less than about 5 km from the base station due to, for example, high propagation attenuation and attenuation by rain, or any other channel obstructions.
MK stems operate under 10 GHz and are not as restricted by the line-of-sight channel requirement as is the case for ML communication systems. Accordingly, it is possible to employ MK base stations having a base station antenna (BSA) and a subscriber's terminal antenna (ATM) being located closer to the ground than for ML systems, and also with obstructions placed therebetween. This is the case, because radio frequencies under 10 GHz are generally capable of penetrating the obstructions to some extent, and have diffraction properties that are more favorable than at the higher frequencies. Accordingly, from a service provider perspective, the number of subscribers who could be covered by an MK system increases thereby obtaining greater potential subscribership for a predetermined geographical area.
However, it is recognized by the present inventors that technical problems associated with MK systems is that at the lower frequencies the electromagnetic energy propagates better, and therefore a lower frequency repeating factor (reuse rate) results in a lower system capacity. Accordingly, even though a large number of subscribers may be covered by a single transmitter, only a small portion of the subscribers can actually use the MK system, due to the lowered capacity of the MK system and its associated limited frequency repeating factor. While it is possible to use higher level modulation techniques to provide a greater amount of information per modulation symbol, the higher modulation level does not actually increase, in a significant way, the system capacity because larger signal
oise ratios (S/N) are required to support the more advanced modulation schemes. Consequently, the total system capacity for cellular applications will not necessarily increase with MK-systems that use a higher modulation level.
A description of such modulation techniques, as well as other background art devices and methods associated with the above described communication concepts and the present invention, may be found in Sklar, B., “Digital Communications Fundamentals and Applications”, Prentice Hall, ISBN 0-13-211939-0, 1998. For wireless cable and other communication systems and components that operate above 1 GHz, a discussion is found at Berkoff, S., et al., “Wireless Cable and SMATV”, Baylin Publications, ISBN 0-917893-17-4, 1992. The entire contents of these two references, being incorporated herein by reference. For convenience, a summary of features and attributes of MK systems and ML systems, is provided in Table 1, which follows.
TABLE 1
Frequency comparison for fixed, broadband radio access.
The comparison is comprehensive and describes typical
differences rather than absolute data.
Frequency
MK-system
ML-system
Features
<10 GHz
>20 GHz
Range:
high
medium
(typically <50 km)
(typically <5 km)
Frequency repetition:
low-medium
good
Modulation:
4-6 bit per symbol
2 bit per symbol
Demand for line-of-sight:
medium
high
Supply of bandwidth:
low-medium
high
Uplink:
low capacity
medium-high capacity
Physical size, directional
medium
small
antenna:
SUMMARY OF THE INVENTION
One object of the present invention, is to overcome the above-identified limitations with conventional system devices and methods.
Consistent with the title of the present section, a summary of selected attributes of the present method, device and system, are provided below. However, a more comprehensive understanding of the present invention is found in the section entitled “Description of the Preferred Embodiments”.
The present method, device and system are directed to a broadband radio communication access service that successfully integrates a microwave system (MK segment) with a millimeterwave system (ML segment) in a single system so as to provide seamless broadband radio access to subscribers located in a predetermined geographic area. The system includes an integrated microwave and millimeterwave system for broadband radio access terminal (IMMBRA) that communicates with system assets using the ML segment, where possible, and allocates MK communication resources to other system components in which ML communications cannot be achieved. The IMMBRA terminal includes a transmodulator, which is able to convert a signal from one signaling format (perhaps used in the ML segment) to another signaling format (perhaps used in the MK segment). By transmodulating signals, it is possible to provide seamless communications through the IMMBRA for distributing and routing information in a wireless configuration, and a reliable and efficient manner. By integrating the MK segment and the ML segment, it is possible to, in a flexible manner, construct an optimal infrastructure for different types of geographic areas. Thus the degree of coverage and range can be significantly improved using the “hybrid” system for the task that it is best suited for subscribers' locations.


REFERENCES:
patent: 5327572 (1994-07-01), Freeburg
patent: 5771449 (1998-06-01), Blasing et al.
patent: 5890055 (1999-03-01), Chu et al.
patent: 5920607 (1999-07-01), Berg
patent: 5949766 (1999-09-01), Ibanez-Meier et al.
patent: 5956098 (1999-09-01), Mizukami et al.
patent: 5991345 (1999-11-01), Ramasastry
patent: 6047177 (2000-04-01), Wickman

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Broadband radio access method, device and system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Broadband radio access method, device and system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Broadband radio access method, device and system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2613128

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.