Broadband medical emergency response system

Telecommunications – Radiotelephone system – Emergency or alarm communication

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S431000, C455S098000, C455S521000

Reexamination Certificate

active

06801764

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to broadband communication systems onboard a mobile platform, such as an aircraft, that use satellite communication and, more specifically, to a broadband medical emergency response system that uses the broadband communication system onboard the mobile platform.
BACKGROUND OF THE INVENTION
Currently on mobile platforms, such as aircrafts, ships, and the like, and in remote locations, the availability of competent medical evaluation and diagnosis during a medical emergency is very limited. Additionally, accessing real-time help to aid in the medical emergency is also limited. For example, when an emergency medical situation arises on an aircraft, members of the flight crew on board the aircraft must respond to the medical emergency and offer assistance. While members of the flight crew may have an understanding of basic first aid, the typical member of the flight crew is not trained to provide any assistance beyond basic first aid. As a result, the flight crew will not be able to make a competent decision on whether the medical emergency occurring onboard the aircraft requires immediate attention and the aircraft to divert from its present course and proceed to the nearest airport so that proper medical care can be administered to the injured party. The cost associated with diverting an aircraft from its present course to the closest source of medical care is expensive and a major inconvenience for other passengers on the aircraft. Therefore, it is desirable to know if the medical emergency onboard the aircraft requires the diverting of the aircraft to the nearest source of medical care so that the high cost and inconvenience to other passengers can be avoided if the medical emergency does not require immediate medical attention. Likewise; onboard a ship or at a remote location, the cost of evacuating an injured party to a location where competent medical care can be obtained is also very expensive. At the same time, access to critical medical support in real time may be the only way to save a person under a life threatening medical condition.
Therefore, what is needed is a way to diagnose the medical emergency condition so that an informed decision can be made on whether the medical emergency condition requires immediate transfer of the injured party to a location where medical care can be rendered. Additionally, it is desirable to have access to real-time medical help to aid in the care of the injured party during the transport to the medical care facility. In the event that a medical emergency does not require the immediate transportation of the injured party to a medical care facility, it is desirable to have a means of monitoring the condition of the medical emergency and to provide treatment to the injured party until proper medical care can be administered.
To meet these needs, emergency medical response apparatuses have been developed that allow a person to access real-time medical consulting services. The emergency response apparatuses typically have monitors that can be connected to an injured party to monitor and record various vital signs and conditions of the injured party. The emergency response apparatuses utilize a combination voice and limited data download to aid in diagnosis and to provide a support line to experts in a medical care facility or emergency response center to provide information to a person that is assisting the injured party. On an aircraft, the emergency response apparatus communicates with the emergency response center via air phones located on the aircraft. Due to the nature of the data transmission methodology, data downloads have been limited to the available bandwidth from the airborne; phone systems. When the emergency response apparatus is tied to two sets of phone lines at the same time, the member of the flight crew assisting the injured party has access to full voice support while data is sent on a second line at about 9.6 KB. The member of the flight crew, can choose to send a limited real-time data feed, compressed snapshot telemetry data, or very limited video data from a hand-held camera via this line.
While the use of the emergency response apparatus in conjunction with the air phone system has provided benefits to the flight crew in responding to a medical emergency, the present apparatuses are hindered by the limited data transfer that can be obtained over the air phone lines. Therefore, it would be desirable to be able to take advantage of the increased bandwidth provided by the developing broadband communication systems that are designed for use onboard mobile platforms, so that the amount of data that can be provided from the emergency response-apparatus to the medical providers at an emergency response center can be increased and a better diagnosis of the medical condition can be attained. Additionally, the broadband communication systems will enable real-time video to be transferred between the flight crew and the emergency response center.
The typical broadband communication systems that are deployed and that are being developed to be deployed on mobile platforms are designed to support multiple simultaneous users. Passengers on the mobile platform can access things such as email, web pages, television, and other data sources via the onboard broadband communication systems. The owners of the mobile platforms charge the passengers that utilizes the onboard broadband communication system a fee for using the system. However, the capabilities of the onboard broadband communication systems are not unlimited and the bandwidth can only support so much data being transferred between the mobile platform and a remote location, such a ground station. During an emergency response situation, it is imperative that the emergency response apparatus be given sufficient bandwidth on the onboard broadband communication system, so that proper medical diagnosis and care can be provided. However, it is also desirable to maintain the ability of passengers onboard the mobile platform to continue to use the onboard broadband communication system during the emergency response situation so that the passengers paying for such service can continue to receive the service and the operator of the mobile platform can continue to receive the fees associated with such usage.
Therefore, what is needed is an emergency response apparatus that can use the broadband communication system onboard a mobile platform to engage in broadband communication between the emergency response apparatus and an emergency response center. A method of managing the broadband communication system onboard the mobile platform is also needed so that the emergency response apparatus is provided with the bandwidth necessary for the proper diagnosis and treatment of the emergency medical condition while also allowing passengers onboard the mobile platform to continue or begin to use the broadband communication system onboard the mobile platform. This would allow the operator of a mobile platform to continue to receive revenue from the paying users of the broadband communication system for using the onboard broadband communication system during an emergency response situation.
SUMMARY OF THE INVENTION
The present invention is directed to a method and apparatus for allowing an emergency response apparatus onboard a mobile platform to use a broadband communication system on the mobile platform to engage in broadband communication with an emergency response center during an emergency response situation. The onboard broadband communication system engages in broadband wireless communication with a ground based station. The onboard broadband communication system allows multiple users onboard the mobile platform to simultaneously use the, onboard broadband communication system to communicate with the ground station. A server onboard the mobile platform controls the operation of the onboard broadband communication system. The server allocates data streams between the onboard broadband communication system and the ground station so that the m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Broadband medical emergency response system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Broadband medical emergency response system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Broadband medical emergency response system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3296549

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.