Glass manufacturing – Processes – Fusion bonding of glass to a formed part
Reexamination Certificate
2000-02-15
2004-03-02
Jones, Deborah (Department: 1775)
Glass manufacturing
Processes
Fusion bonding of glass to a formed part
C065S041000, C065S059100, C065S059220, C219S600000, C219S633000, C228S903000
Reexamination Certificate
active
06698242
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a brittle article or body comprising joined-together hardened glass parts and/or glass-ceramic parts with a small linear thermal expansion coefficient. The hardened glass parts and the glass-ceramic parts are joined together to form the brittle article by means of a joining or bonding material. The present invention relates to a method of making a brittle article of this type.
2. Prior Art
In certain glass or glass-ceramic applications it is necessary to bond or join-together hardened glass parts and/or glass-ceramic parts that are present in a cold or unheated initial state.
Joining glass parts functioning as respective partners, which are cold in an initial state, in an article by bonding by means of inorganic adhesives and silicones as bonding means is known in the art. However with glass-ceramic parts functioning as partners to be joined together, which are cold in the initial state, and which have known very small linear thermal expansion coefficients, these inorganic adhesives generally fail under great thermal stress, since they have a widely varying linear thermal expansion coefficients in contrast to the glass-ceramic material.
Silicone adhesives are known as a joining or bonding material for joining glass-ceramic parts into an article, especially a sunken cooking panel, which bond the joined partners together. Silicone adhesives generally have the property that they are heat-resistant only up to a maximum of 300° C. and thus are questionable for heated regions. Furthermore these adhesives can be weakened or loosened under pressure, heat and moisture, so that a permanent bond or seal is not guaranteed in cooking on or in sunken glass-ceramic cooking panels.
An additional disadvantage is that the adhesive joining materials are not very resistant to abrasive agents, to which they are subjected during cleaning processes, or to mechanical stresses in cooking processes (stirring, grating, etc).
Silicone adhesive materials can be resistant to food materials in the sense of complying with food regulations and laws, however a psychological problem exists with a user or operator, when he or she prepares his or her food also on a so-to-say “rubber packing or sealing element”, because he or she fears contamination that will at least spoil the taste of the food.
Furthermore it is known to join glass parts with large linear thermal expansion coefficients as joined partners in an article or body by means of solder. Low melting glass solder is applied as a joining material between the surfaces of the glass parts to be bonded together and is heated in an oven until it melts. A strong joint connection arises when the glass-solder solidifies. Generally these bonding methods are of questionable applicability because of the extreme differences of the thermal expansion coefficients between the normal glass an glass-ceramic materials and also because the glass solder for joining glass-ceramic parts or hardened glass parts is brittle.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a mechanically and thermally sufficiently stable bond or joint connection between hardened glass and/or glass-ceramic parts, which are cold in their initial state, i.e. between glass-ceramic and glass-ceramic parts, but also between glass-ceramic and hardened glass parts or between hardened glass and hardened glass parts.
It is another object of the present invention to provide a brittle article or body comprising joined-together hardened glass parts and/or glass-ceramic parts with small linear thermal expansion coefficients that has improved thermal and mechanical stability.
It is an additional object of the present invention to provide a method of making this thermally and mechanically stable brittle article or body.
These objects, and others that will be made more apparent hereinafter, are attained in a brittle article comprising joined-together hardened glass parts and/or glass-ceramic parts with small linear thermal expansion coefficients.
According to the invention the joining material is a metallic ductile material, that bonds the respective initially cold or unheated hardened glass and/or glass-ceramic parts sufficiently well with each other when the metallic ductile material is inductively heated in order to melt it.
The method of making the above-described brittle article or body comprising joined-together hardened glass parts and/or glass-ceramic parts made from glass-ceramic material with small linear thermal expansion coefficients comprises the steps of:
a) placing the partners to be joined together with a metallic ductile joining material between them in a high frequency alternating field;
b) inductively heating the metallic ductile joining material locally to melt the metallic ductile joining material;
c) pressing the partners to be joined for a predetermined time with a predetermined pressure to form a sufficiently adherent joint connection or sufficiently strong bond between the partners; and
d) tempered cooling of the partners joined together in step c).
A joint is formed by the method according to the invention, which is resistant to mechanical and thermal stresses. Since the joining or bonding material is a ductile material, i.e. it is easily shaped, stretched and distended, the partners being joined can easily be securely held together by the bonding material, even when they expand or stretch different amounts when heated because of differing linear thermal expansion coefficients.
Very complex shapes of the brittle articles can be obtained by the methods according to the invention, which are not possible by conventional shaping methods for hardened glass or glass-ceramics.
DE-PS 649 620 describes a method of making a glass shaped body made by joining together glass parts. This method is however based on heating the glass parts to be joined together, the partners to be joined, to a very hot state, preferably hotter than 540° C. This known method may be performed efficiently only with the partners to be jointed directly subjected to the hot shaping process. The partners to be joined must necessarily be very hot, so that they may be bonded with the joining material, aluminum, which is either applied as a cold foil between the parts to be bonded together or which is present as an immersion-melt bath.
This publication thus provides no suggestion or disclosure for the joining together of cold hardened glass or glass-ceramic parts with each other. Partners to be joined together and joining materials, which are in an initial cold state, are bonded together with each other in the method of the present invention with only a local inductive heating of the joining material. Thus the glass or glass-ceramic parts are joined after their shaping process in a timely manner, which is separate from the joining or bonding process.
Of course DE-AS 21 09 902 describes the bonding of two cold glass parts with an initially cold joining material (aluminum), which is heated locally by means of a resistive heating. However a very great bonding pressure has already been applied prior to the heating, since the aluminum was already cold-formed prior to the heating.
According to the invention the heating occurs inductively. Because of that the heating is only applied locally so that the solder is specifically heated and the glass or glass-ceramic material is only heated to a small extent by heat conduction. In the above-described publication a resistive heating is used. A coil around the parts to be joined together is heated, which transfers its heat to the described wall and front panel by heat radiation. This heating method is entirely different from the method used in the claimed invention. The glass parts are thus completely heated by the described wall and front panel, and a limited local heating does not occur, as in the claimed method above.
The known resistive heating thus occurs by means of a heated coil, i.e. by a type of susceptor. That is completely different—clearly less efficient—than the type
Beer Ulrike
Beier Wolfram
Hubert Stefan
Liebald Rainer
Schnabel Roland
Jones Deborah
Piziali Andrew
Schott Glas
Striker Michael J.
LandOfFree
Brittle article comprising joined-together hardened glass... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Brittle article comprising joined-together hardened glass..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Brittle article comprising joined-together hardened glass... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3191619