Surgery – Respiratory method or device – Means for supplying respiratory gas under positive pressure
Reexamination Certificate
2001-09-26
2003-04-01
Lewis, Aaron J. (Department: 3761)
Surgery
Respiratory method or device
Means for supplying respiratory gas under positive pressure
C128S204180
Reexamination Certificate
active
06539940
ABSTRACT:
BACKGROUND OF THE INVENTION
The sleep arena syndrome, and in particular obstructive sleep apnea, afflicts an estimated 4% to 9% of the general population and is due to episodic upper airway obstruction during sleep. Those afflicted with obstructive sleep apnea experience sleep fragmentation and intermittent, complete or nearly complete cessation of ventilation during sleep with potentially severe degrees of oxyhemoglobin unsaturation. These features may be translated clinically into debilitating daytime sleepiness, cardiac disrhythmias, pulmonary-artery hypertension, congestive heart failure and cognitive dysfunction. Other sequelae of sleep apnea include right ventricular dysfunction with cor pulmonale, carbon dioxide retention during wakefulness as well as during sleep, and continuous reduced arterial oxygen tension. Hypersomnolent sleep apnea patients may be at risk for excessive mortality from these factors as well as from an elevated risk for accidents such as while driving or operating other potentially dangerous equipment.
Although details of the pathogenesis of upper airway obstruction in sleep apnea patients have not been fully defined, it is generally accepted that the mechanism includes either anatomic or functional abnormalities of the upper airway which result in increased air flow resistance. Such abnormalities may include narrowing of the upper airway due to suction forces evolved during inspiration, the effect of gravity pulling the tongue back to appose the pharyngeal wall, and/or insufficient muscle tone in the upper airway dilator muscles. It has also been hypothesized that a mechanism responsible for the known association between obesity and sleep apnea is excessive soft tissue in the anterior and lateral neck which applies sufficient pressure on internal structures to narrow the airway.
The treatment of sleep apnea has included such surgical interventions as uvalopalatopharyngoplasty, gastric surgery for obesity, and maxillo-facial reconstruction. Another mode of surgical intervention used in the treatment of sleep apnea is tracheostomy. These treatments constitute major undertakings with considerable risk of post-operative morbidity if not mortality. Pharmacologic therapy has in general been disappointing, especially in patients with more than mild sleep apnea. In addition, side effects from the pharmacologic agents that have been used are frequent. Thus, medical practitioners continue to seek non-invasive modes of treatment for sleep apnea with high success rates and high patient compliance including, for example in cases relating to obesity, weight loss through a regimen of exercise and regulated diet.
Recent work in the treatment of sleep apnea has included the use of continuous positive airway pressure (CPAP) to maintain the airway of the patient in a continuously open state during sleep. For example, U.S. Pat. No. 4,655,213 and Australian patent AU-B-83901/82 both disclose sleep apnea treatments based on continuous positive airway pressure applied within the airway of the patient.
Also of interest is U.S. Pat. No. 4,773,411 which discloses a method and apparatus for ventilatory treatment characterized as airway pressure release ventilation and which provides a substantially constant elevated airway pressure with periodic short term reductions of the elevated airway pressure to a pressure magnitude no less than ambient atmospheric pressure.
Publications pertaining to the application of CPAP in treatment of sleep apnea include the following:
1. Lindsay, D A, Issa F G, and Sullivan C. E. “Mechanisms of Sleep Desaturation in Chronic Airflow Limitation Studied with Nasal Continuous Positive Airway Pressure (CPAP)”,
Am Rev Respir Dis,
1982; 125: p.112.
2. Sanders M H, Moore S E, Eveslage J. “CPAP via nasal mask: A treatment for occlusive sleep apnea”,
Chest,
1983; 83: pp. 144-145.
3. Sullivan C E, Berthon-Jones M, Issa F G. “Remission of severe obesity-hypoventilation syndrome after short-term treatment during sleep with continuous positive airway pressure”,
Am Rev Respir Dis,
1983; 128: pp. 177-181.
4. Sullivan C E, Issa F G, Berthon-Jones M, Eveslage. “Reversal of obstructive sleep apnea by continuous positive airway pressure applied through the nares”,
Lancet,
1981; 1: pp. 862-865.
5. Sullivan C E, Berthon-Jones M. Issa F G. “Treatment of obstructive apnea with continuous positive airway pressure applied through the nose”,
Am Rev Respir Dis,
1982; 125: p.107. Annual Meeting Abstracts.
6. Rapoport D M, Sorkin B, Garay S M, Goldring R M. “Reversal of the ‘Pickwickian Syndrome’ by long-term use of nocturnal nasal-airway pressure”,
N Engl J. Med,
1982; 307: pp.931-933.
7. Sanders M H, Holzer B C, Pennock B E. “The effect of nasal CPAP on various sleep apnea patterns”,
Chest,
1983; 84: p.336. Presented at the Annual Meeting of the American College of Chest Physicians, Chicago Ill., October 1983.
Although CPAP has been found to be very effective and well accepted, it suffers from some of the same limitations, although to a lesser degree, as do the surgical options; specifically, a significant proportion of sleep apnea patients do not tolerate CPAP well. Thus, development of other viable non-invasive therapies has been a continuing objective in the art.
BRIEF SUMMARY OF THE INVENTION
The present invention contemplates a novel and improved method for treatment of sleep apnea as well as novel methodology and apparatus for carrying out such improved treatment method. The invention contemplates the treatment of sleep apnea through application of pressure at variance with ambient atmospheric pressure within the upper airway of the patient in a manner to promote dilation of the airway to thereby relieve upper airway occlusion during sleep.
In one embodiment of the invention, positive pressure is applied alternately at relatively higher and lower pressure levels within the airway of the patient so that the pressure-induced force applied to dilate the patient's airway is alternately a larger and a smaller magnitude dilating force. The higher and lower magnitude positive pressures are initiated by spontaneous patient respiration with the higher magnitude pressure being applied during inspiration and the lower magnitude pressure being applied during expiration.
The invention further contemplates a novel and improved apparatus which is operable in accordance with a novel and improved method to provide sleep apnea treatment. More specifically, a flow generator and an adjustable pressure controller supply air flow at a predetermined, adjustable pressure to the airway of a patient through a flow transducer. The flow transducer generates an output signal which is then conditioned to provide a signal proportional to the instantaneous flow rate of air to the patient. The instantaneous flow rate signal is fed to a low pass filter which passes only a signal indicative of the average flow rate over time. The average flow rate signal typically would be expected to be a value representing a positive flow as the system is likely to have at least minimal leakage from the patient circuit (e.g. small leaks about the perimeter of the respiration mask worn by the patient). The average flow signal is indicative of leakage because the summation of all other components of flow over time must be essentially zero since inspiration flow must equal expiration flow volume over time, that is, over a period of time the volume of air breathed in equals the volume of the gases breathed out.
Both the instantaneous flow signal and the average flow rate signal are fed to an inspiration/expiration decision module which is, in its simplest form, a comparator that continually compares the input signals and provides a corresponding drive signal to the pressure controller. In general, when the instantaneous flow exceeds average flow, the patient is inhaling and the drive signal supplied to the pressure controller sets the pressure controller to deliver air, at a preselected elevated pressure, to the airway of the patient. Similarly, when the instantaneous flow rate is less than the avera
Estes Mark
Sanders Mark H.
Zdrojkowski Ronald J.
Haas Michael W.
Lewis Aaron J.
Respironics Inc.
LandOfFree
Breathing gas delivery method and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Breathing gas delivery method and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Breathing gas delivery method and apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3077489