Breathing apparatus and method

Surgery – Respiratory method or device – Means for supplying respiratory gas under positive pressure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S204210, C128S204230, C128S205110

Reexamination Certificate

active

06622726

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to a breathing apparatus or ventilator and method for supplying inspiratory gases to a living being such as a human or animal patient, and is particularly concerned with relieving the breathless sensation often encountered by individuals on ventilators.
A breathing apparatus or ventilator is generally connected to a patient through a patient circuit having an inspiratory limb and an expiratory limb. The ventilator delivers gases to the patient from a gas delivery unit through the inspiratory limb during inspiration, and allows removal of expired gases through the expiratory limb during expiration. Pressure targeted ventilation is a type of ventilation in which the ventilator tries to reach a pre-set pressure level and maintain that level during the inspiration phase. There are two types of pressure targeted ventilation, called pressure control ventilation and pressure support ventilation, or PSV.
One problem with all types of ventilation is that patients sometimes feel breathless even though the work of breathing has been reduced significantly. This is because the amount of gas supplied by the ventilator at a certain time may not necessarily correspond to the patient's own effort to inhale, or the patient inspiratory muscle pressure change (Pmus). From the physiological standpoint, when the patient generates a certain level of Pmus, he would expect a certain level of flow into his airway. For the patient under mechanical ventilation, if the flow provided by the ventilator is much lower than that level at a given Pmus, the patient will feel breathless (or encounter a resistive load detection). This principle is described in a paper entitled “Effect of timing, flow, lung volume, and threshold pressures on resistive load detection” by Killian et al., Journal of Applied Physiology 1980; 49:958-963. It has also been found that the breathless sensation occurs more at the early phase of the inspiration than the late phase. In patients who have respiratory failure due to high airway resistance, additional resistance from the endotracheal tube and patient circuit, and/or reduced respiratory compliance, the flow as a function of patient Pmus falls below the threshold. In order to compensate for this, patients will increase their inspiratory effort, or Pmus, causing them to feel even more breathless.
The breathless sensation is a problem even in pressure targeted ventilation, since the patient effort is not taken into account in the control system of such ventilatory modes. The control system simply aims to maintain the set pressure level, or Paw, during the inspiratory phase, resulting in a quasi square pressure waveform.
Some other types of ventilation aim to take patient effort into account to some degree. Younes introduced proportional assist ventilation in his article “Proportional assist ventilation, a new approach to ventilatory support”, American Review of Respiratory Diseases 1992;145(1):114-120, U.S. Pat. No. 5,044,362. During proportional assist ventilation, the ventilator is controlled in such a way that the pressure delivered at the airway increases in proportion to the patient spontaneous effort throughout the whole inspiration. The delivered pressure is controlled by two factors, flow assist (resistive gain) and volume assist (elastance gain).
Under proportional assist ventilation, the patient has a very high level of freedom and capability of controlling the ventilator, which can cause problems. For many patients in intensive care units, too much freedom may mean underventilation if the patient's inspiratory effort becomes weak, or overventilation if the patient's inspiratory effort becomes aggressive. Also, in proportional assist ventilation the ventilator control system may “run away” if volume assist is set below patient elastance. The ventilatory support during proportional assist ventilation is proportional to the patient muscle pressure throughout the whole inspiration. Therefore, in proportional assist ventilation, airway resistance and respiratory compliance values representative for the whole inspiratory phase must be accurately calculated for the purposes of accurate ventilator control and ventilatory management.
In the Drager Evita 4 ventilator, as described in the “Drager Evita 4 Operating Manual (Drager Medizintechnik GmbH, Lubeck Germany) there is a breath mode called “automatic tube compensation”. When this mode is used, the user needs to set the endotracheal tube size (resistance factor) and the percentage of tube compensation. The ventilator will then try to overcome the resistance imposed by the endotracheal tube by adding more pressure than the set value, with the use of the anticipated endotracheal tube resistance. This does not take into account any information of patient effort in the adjustment of the compensation levels. The compensation level is fixed and is solely determined by the user-set endotracheal tube size and percentage of tube compensation.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a new and improved pressure targeted breathing apparatus and method which relieves the breathless sensation sometimes encountered by patients on ventilators.
According to one aspect of the present invention, a breathing apparatus for providing positive pressure assistance is provided, which comprises a source of breathing gas, an inspiration line for connecting the source to a patient during an inspiratory phase, an expiratory line for exhausting gases from the patient during an expiratory phase, a pressure sensor for sensing pressure in the system, and a control unit for controlling supply of gas to a patient in each inspiratory phase according to a pre-set target pressure, the control unit being programmed to determine the level of patient breathlessness at periodic intervals and to calculate a boost pressure above the pre-set target pressure based on the determined breathlessness level, and to boost the pressure (and accordingly the flow) of gas supplied to the patient at the start of each inspiratory phase to the most recently calculated boost pressure in order to reduce patient breathlessness, and reduce the pressure back to the target pressure at a predetermined time after the start of the inspiratory phase and prior to the end of the inspiratory phase.
The boost pressure level may be determined by a user-adjustable controller on the apparatus to a selected breathless sensation assist level, or BSA, and may also be varied in proportion to the detected occlusion pressure at the pressure sensor, or Paw, at a predetermined time after the start of inspiration with the patient airway being temporarily occluded, for example at 0.1 seconds after the onset of inspiration (Paw-0.1). Thus, for any selected BSA greater than zero, the pressure boost level will be varied in proportion to the BSA level and detected Paw-0.1 for a preceding measurement or preceding measurements, and will increase with increase in Paw-0.1. This is because research on the relationship between the airway occlusion pressure or Paw and the patient inspiratory effort, or Pmus, have indicated that there is a good consistency between the two pressures at the beginning of inspiration. (Conti, G. et al., American Journal of Respiration and Critical Care Medicine, 1996, 154:907-912). Thus, boosting of pressure (i.e., flow delivery) in proportion to Paw-0.1 can relieve the breathless sensation of ventilated patients.
In one exemplary embodiment of the invention, the pressure boost magnitude is gradually tapered down from the boost level back to the target pressure level at around the middle of the inspiration phase of the respiratory cycle. The control unit is set up to measure the Paw-0.1 value at periodic intervals, and can be measured by delaying the onset of the inspiratory gas delivery for a predetermined time after the ventilator is triggered, such as 0.1 seconds. This allows for a reliable Paw-0.1 measurement without causing significant patient awareness or discomfort. The m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Breathing apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Breathing apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Breathing apparatus and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3100491

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.