Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2001-06-22
2003-12-16
Casler, Brian L. (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C119S014470
Reexamination Certificate
active
06663587
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to breastmilk pumps, and more particularly in one aspect to a breastshield apparatus having a capacity for delivering pressure, positive as well as negative, which can be independently applied in varying degrees and/or zones to better simulate the natural suckling action of a baby, among other advantages.
BACKGROUND OF THE INVENTION
Breastpumps are well known, and generally comprise a hood or shield that fits over the breast, and a vacuum pump connected to the shield for generating an intermittent vacuum (negative pressure) within the shield. In its simplest and most common form, an intermittent suction action of the vacuum pump serves to pull on the breast and massage it so as to extract milk. The extracted milk typically drains from the shield into a collection container, such as a baby bottle, which is ordinarily attached directly to the breastshield apparatus.
Inserts for use within the hood or shield of a rigid breastshield assembly are also known, and have been used for sizing the breastshield. That is, an insert would be used in a larger funnel-shaped breastshield to reduce the internal diameter of the cone portion and/or nipple tunnel, for a smaller breast. Some rigid-type breastshields have also sometimes been employed with a flexible breast-engaging portion or device mounted interior of a rigid external support or frame, not so much as a sizing mechanism but in an attempt at improved milk expression as well as comfort. In the latter application, an intermittent suction (negative pressure) is applied in the space between the flexible membrane and outboard support, causing the membrane to cyclically collapse and then return to its rest state, thereby gently massaging the breast and/or the nipple, for milk expression.
In most instances, the pressure applied at the breast is a negative pressure (suction), as noted above. That negative pressure is typically applied to the interior of the breastshield in a singular fashion, that is, without any kind of differential pressure application over the breastshield as a whole. This has ordinarily been done through a cyclic pattern (e.g., intermittent) of suction only. There have also been some efforts to provide a breastshield which has a positive pressure applied at the breast, that is, a compressive force around a portion that is capable of expanding (inflating).
The present invention has its genesis in an improved breastshield, breastpump assembly and method for operating the same, which seeks to combine various attributes of positive and/or negative pressure applications, as well as differential sequencing of how one or both are applied in operation.
SUMMARY OF THE INVENTION
A breastshield for a breastpump has an inner shield part with an interior adapted to receive at least some of a woman's breast including the nipple therein, and an outer shield part outboard to the inner shield part. The inner and outer shield parts are joined to form an enclosure defining a pressurizable chamber. The inner shield part further has at least a portion thereof movable relative to the outer shield part when the chamber is subject to one of a negative and a positive pressure.
A first pressure port is in communication with the chamber for connection with a fluid pressure source of a first pressure. A second pressure port is in communication with the interior for connection with a pressure source of a second pressure. The breastshield is thus capable of being subjected to two different pressures, such as a positive pressure to move (expand) the chamber into the interior, so as to compress or massage the nipple/breast, and a negative pressure in the interior to draw the nipple/breast further therein for the expression of milk. The pressures can furthermore be independently controlled. They could, moreover, alternate being negative and positive through the same pressure port.
It will be understood that the terms negative and positive as used herein are relative terms. A negative pressure could, for instance, merely be less positive than another pressure. Negative pressure in general as applied to the interior space is typically less than ambient (e.g., vacuum), however.
In one aspect of the invention, the flexible inner shield part conforms to and extends substantially along the entire length of a funnel-shaped interior to the outer shield part.
The invention further takes the form of a breastshield for breastmilk pumping having a rigid outer shield part, an inner shield part molded integrally within the said outer shield part, with the inner shield part forming an inner sidewall to the breastshield and thereby defining an interior adapted to receive therein and surround at least some of a woman's breast including a nipple in a substantially airtight engagement with the breast. A flexible area is formed on the inner shield part, which is capable of movement relative to a breast received within the breastshield. This flexible area advantageously extends around a substantial part of the interior.
An expansible chamber is defined between the inner and outer shield parts, with the flexible area in communication with the chamber. A first port communicates with the chamber to connect a source of fluid pressure to the chamber, whereby application of a source of fluid pressure to the chamber causes the chamber to expand under positive pressure and contract under negative pressure to thereby move the flexible area. A second port communicates with the interior, whereby application of a source of negative pressure is communicated to the interior.
One embodiment along the immediately preceding lines has first and second expansible chambers defined between the inner and outer shield parts, with a flexible area in communication with each chamber. The first port communicates with the first chamber to connect the source of fluid pressure to the first chamber, and a third port is in communication with the second chamber to connect the source of fluid pressure to the second chamber. This enables the first chamber to be subjected to one fluid pressure while the second chamber is subjected to another and different fluid pressure.
Another aspect of the invention is an improved breastshield for a breastpump having an inflated bladder forming a generally toroidal part of the flexible inner shield part within which toroidal part a woman's breast is received to extend toward the downstream part. This bladder is moved relative to the breast
ipple.
In yet another aspect of the invention, a breastshield for a breastpump has a base member with a port through which air and milk can pass. A breast receptacle is mounted on the base, and has an expansible chamber device with an inner flexible sidewall which further forms an interior space adapted to receive at least a portion of a woman's breast including the nipple therein. A first port formed in one of the base and breast receptacle is in communication with an interior of the chamber for connection with a source of fluid pressure. A second port formed in one of the base and breast receptacle is in communication with the expansible chamber device for communication with the source of fluid pressure.
The foregoing breast receptacle is formed in a single piece with an inner shield part, an outer shield part spaced from the inner shield part and a smoothly curved top transition part, the inner, outer and top parts thereby defining the chamber surrounding the interior space. Further, the single piece of the breast receptacle can be designed to have an outer shield part with a greater wall thickness than the inner flexible sidewall, such that the outer shield part is relatively rigid compared to the inner shield part. In a modified form, the single piece of the breast receptacle is initially formed as a flexible-walled member enclosing an interior region with opposed first and second end openings to the interior space; the breast receptacle is then provided by causing the first end to be inverted into the interior region and then placed within the seco
Schweizer Russ
Silver Brian H.
Baniak Pine & Gannon
Casler Brian L.
Medela Holding AG
Serke Catherine
LandOfFree
Breastshield with multi-pressure and expansible chamber... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Breastshield with multi-pressure and expansible chamber..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Breastshield with multi-pressure and expansible chamber... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3141485