Breast surgery method and apparatus

Surgery – Instruments – Means for removing tonsils – adenoids or polyps

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06280450

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to surgical apparatus and methods for obtaining a subcutaneous target mass having varied shape and dimension.
BACKGROUND OF THE INVENTION AND DESCRIPTION OF THE PRIOR ART
Modern medical diagnostics increasingly rely on complex imaging technologies to identify abnormal conditions and/or masses within the human body. Such technologies as magnetic resonance imaging (MRI), ultrasonics, computerized axial tomography (CAT scan), and mammogram x-rays, aid medical personnel in the initial identification of areas within the body exhibiting potentially dangerous, abnormal biological activity. The beneficial aspect of these technologies is their ability to image biological structures interior to the human body, providing a non-invasive tool useful in facilitating preliminary diagnosis and treatment of detected anomalies.
Detected subcutaneous biological growths, masses, etc. once identified generally require complete surgical excision or at the very least an open biopsy procedure.
Small masses such as calcifications encountered in breast tissue are generally removed in their entirety. The process of excising the mass is an invasive process, performed either during exploratory surgery or utilizing specifically designed surgical apparatus. The retrieved specimen is subsequently pathologically analyzed to determine its biological properties, i.e. benign or malignant.
Several types of apparatus are known for use in removing portions of subcutaneous masses in breast tissue targeted by these imaging techniques. However, these apparatus generally either obtain only small tissue specimens from the main mass or cause significant surface scarring due to the size of the incision necessary to remove the mass with a safe resection margin.
One type of specimen retrieval is performed with needle aspiration devices. These devices have a needle with an end hole. The needle is advanced to a desired location where a sample specimen is obtained via suction. Size and quality of specimens obtained by these devices are often poor, requiring multiple sampling of each desired target mass. Moreover, tissue encountered along the path to the desired location is unavoidably removed. A hollow channel is created upon withdrawal of the device from the patient, thereby allowing “seeding” of the hollow channel removal tract with abnormal cells. Some needle systems utilize an enlarged needle end hole, creating a boring probe which obtains a greater portion of tissue. This lessens the likelihood that the specimen will be too small but increases the amount of surface scarring due to the larger size incision required.
The percutaneous incisions needed when multiple needle channels or large needle bore channels are used often result in significant scarring, dimpling and disfigurement of surface tissue.
Needle side cutting devices have a blade extending around the circumference of a hollow needle shaft. The shaft and blade are axially rotated around the skin entry site, allowing a larger overall specimen to be excised. Target tissue is sliced and a non-contiguous specimen is obtained due to the spiral blade path. While these needle side cutting devices facilitate capture of larger sample specimens, they require resection of a relatively large core of tissue between the incision and the specimen desired to be resected. Additionally, needle side cut devices result in irregularly shaped specimens and subcutaneous cavities having irregular and/or bleeding margins.
Hence, the known devices are particularly ill suited in retrieving tissue masses from the female breast, due to the interest in preserving cosmetic integrity of the surface tissue as well as the inability of the known devices to remove most masses/calcifications during a single application.
SUMMARY OF THE INVENTION
This invention provides surgical apparatus and methods where size and shape of subcutaneous tissue identified for excision is minimally dependent on dimensions of the percutaneous incision. The apparatus and methods have specific utility in breast surgery.
In one of its aspects this invention provides apparatus for excision of the subcutaneous target tissue mass through a cutaneous incision smaller than maximum transverse dimension of the tissue mass excised where the apparatus includes an axially elongated member including cutaneous tissue piercing means at one end and means connected to the elongated member and being radially expandable relative thereto for cutting a circumferential swath of radius greater than maximum transverse dimension of the elongated member and greater than maximum transverse cross-sectional dimension of the target tissue mass in order to separate the target tissue mass from surrounding tissue for excision thereof through the incision. The apparatus may further include an expandable aseptic shield concentric with the elongated member and axially slidably advanceable over the cutting means when in the radially expanded configuration, to collectibly bag the target tissue mass detached from the patient by the cut circumferential swath, for aseptic removal in an axial direction together with the elongated member through the incision resulting from entry of the cutaneous tissue piercing means.
The apparatus may yet further include a sheath which is axially slidably concentric with the elongated member and connected to first ends of the cutting means for expanding the cutting means from generally linear and axial orientation to a curved basket-like orientation by axial movement relative to the elongated member.
In yet another of its aspects the invention provides apparatus for excision of a sub-cutaneous target tissue mass through a cutaneous incision smaller than maximum transverse dimension of the tissue mass excised where the apparatus includes an axially elongated member through which cutaneous tissue piercing means may be extended to emerge at one end thereof. The apparatus further includes means insertable through the elongated member which is radially expandable relative to the elongated member for cutting a conical swath having base radius greater than maximum transverse dimension of the elongated member and greater than maximum transverse cross-sectional dimension of the target tissue mass, for separating the target tissue mass from surrounding tissue for removal thereof through the incision. In this embodiment of the invention the apparatus further preferably includes expandable aseptic shield means insertable through the elongated member and advanceable over the path of the cutting means to radially expand and collectibly bag the tissue mass detached from a patient by the conical swath cutting for aseptic removal in an axial direction through the elongated member and the incision resulting from entry of the cutaneous tissue piercing means.
In one of its aspects this invention preferably provides such apparatus having a piercing segment for penetrating a percutaneous entrance incision. The forward edge of the piercing segment preferably separates breast tissue in the path of the target tissue to be excised. The piercing segment preferably passes through the specimen to be excised, delivering an associated preferably circular array of preferably highly flexible cutting blades to the interior identified subcutaneous breast growth.
The circular array of preferably flexible cutting blades is preferably radially expanded by action of an attached actuating shaft. The blades radially expand to preferably cut by electro-cauterizing the breast tissue as they rotate around a defined periphery. The blades preferably outwardly expand to envelope the target tissue specimen and axially rotate to separate the target tissue growth from surrounding breast tissue. The target tissue growth is excised from surrounding breast tissue outisde the periphery of the circular blade path and is preferably secured by a snaring membrane placed riding over the circular array of flexible cutting blades.
The membrane is preferably secured over the blade array through an integral drawstring assembly contracting the mou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Breast surgery method and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Breast surgery method and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Breast surgery method and apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2501624

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.