Breaker/starter with auto-configurable trip unit

Electricity: motive power systems – Automatic and/or with time-delay means – Plural – diverse conditions or with time-delay means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C318S430000, C318S453000, C318S473000, C361S043000, C361S094000, C361S024000, C361S031000

Reexamination Certificate

active

06252365

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATION
This is related to U.S. patent application Ser. No. 09/375,694 entitled Small-Sized Industrial Rated Electric Motor Starter Switch Unit filed concurrently herewith which is incorporated herein by reference.
BACKGROUND OF THE INVENTION
The present invention relates to an integrated circuit breaker/starter for a motor.
In the field of motor control, it is known to control the operation of a motor (e.g., to start or stop the motor) using a contactor, which is a three pole switch which is electrically operated by a (usually) continuously energized solenoid operating coil. It is also known to provide thermal protection, i.e., overload protection, to a motor against overload conditions using a motor overload relay. Overload conditions occur when equipment is operated in an electrically undamaged circuit in excess of normal full-load rating, or when conductors carry current in excess of rated ampacity. Overload conditions persisting for a sufficient length of time will damage or overheat the equipment. Overload conditions do not include faults which require instantaneous protection such as a short circuit or ground fault or a loss of a phase. The terms “overload,” “overload protection” and “overload relay” are defined in the National Electrical Manufacturers Association (NEMA) standard ICS2, which is herein incorporated by reference. Typical overload relays have been implemented using bimetal relays, and more recently using electronics and current transformer sensors. A conventional motor starter is typically implemented by a combination of a contactor and a motor overload relay.
Overload conditions result in a cumulative heating effect in motor circuits, and subsequently a cooling effect after the motor circuit is deenergized, such as with an overload relay. Therefore, the length of time that a motor can operate before overheating under overload conditions will vary if the motor is energized and deenergized too frequently. This cumulative heating and cooling effect is known as thermal memory, i.e., operating memory as defined in NEMA standard ICS2.
Typical overload relays, such as bimetal relays, compensate for thermal memory of the motor mechanically through the thermal memory of the bimetal components within the relays themselves. However, thermal memory, i.e., the cumulative heating and cooling effect, changes between motor applications. Therefore, a bimetal relay must be matched to a particular motor and cannot be used to provide overload protection for more than one motor application.
Electronic devices, e.g., electronic overload relays or electronic trip units, can compensate for thermal memory through software algorithms. The algorithms have adjustable parameters that can be changed from one motor application to another. However, unlike the bimetal relays, the ability to compensate for thermal memory is lost in prior art electronic devices when power is interrupted.
To protect an electrical motor from electrical overload conditions, it is known to use a circuit breaker in combination with a motor starter. Motor control centers and combination starter panels both use motor combination starters. There are typically two types of circuit breakers used in motor starter applications. The first is an “inverse time” general circuit breaker, and the second (more common) type is the “instantaneous trip” only circuit breaker, which provide instantaneous protection from faults such as short circuits, ground faults or a loss of a phase. The instantaneous trip circuit breaker is more typically used in motor applications due to cost considerations, and because the use of an inverse time circuit breaker provides more protection than is typically needed. Further, inverse time circuit breakers are not typically configured for motor protection, as motor protection requires different trip times than typical circuit breaker applications.
A typical motor application circuit is shown in FIG.
1
. The circuit is connected between lines L
1
and L
2
and includes a normally-closed stop switch
10
, a normally-open start switch
12
, a contactor coil
14
, and a conventional overload relay
15
. The contactor coil
14
is energized or de-energized appropriately to operate contactors in a three-phase system, where each of three phase lines A, B, and C has a circuit breaker
16
a
,
16
b
, and
16
c
, respectively, contactors
14
a
,
14
b
, and
14
c
, respectively, and motor overload protection
18
a
,
18
b
, and
18
c
, respectively. The circuit breakers
16
a
,
16
b
, and
16
c
are typically implemented by instantaneous trip circuit breakers.
It would be desirable to consolidate the circuit breaker instantaneous trip with a motor starter overload protection. It would also be desirable to be able to vary or reconfigure the circuit breaker trip time for different motor applications. It would further be desirable to prevent the circuit breaker from tripping during a motor overload condition and to be able to provide a substantially continuous power supply to the motor electronics so that the occurrence of an overload condition and thermal memory can be remembered.
SUMMARY OF THE INVENTION
The present invention overcomes the problems described above, and achieves additional advantages, by providing for an integrated circuit breaker/motor starter which includes a controller or contactor arranged to control an electrical motor, and a motor overload relay/trip unit for providing thermal protection for the electrical motor, the overload relay being connected to the controller or contactor and being capable of receiving at least one removably connectable contactor module. The contactor module can be a circuit breaker, and can be encoded such that the connection of the module will provide an indication to the controller of desired trip time configuration. Thus, numerous module types can be readily connected or disconnected from the starter to adapt the integrated starter/breaker to a variety of motor control applications.


REFERENCES:
patent: D. 367265 (1996-02-01), Yamagata et al.
patent: 2340682 (1944-02-01), Powell
patent: 2719203 (1955-09-01), Gelzheiser et al.
patent: 2937254 (1960-05-01), Ericson
patent: 3158717 (1964-11-01), Jencks et al.
patent: 3162739 (1964-12-01), Klein et al.
patent: 3197582 (1965-07-01), Norden
patent: 3307002 (1967-02-01), Cooper
patent: 3517356 (1970-06-01), Hanafusa
patent: 3631369 (1971-12-01), Menocal
patent: 3803455 (1974-04-01), Willard
patent: 3883781 (1975-05-01), Cotton
patent: 3996499 (1976-12-01), Gary et al.
patent: 4007401 (1977-02-01), Kimmel et al.
patent: 4129762 (1978-12-01), Bruchet
patent: 4144513 (1979-03-01), Shafer et al.
patent: 4158119 (1979-06-01), Krakik
patent: 4165453 (1979-08-01), Hennemann
patent: 4166988 (1979-09-01), Ciarcia et al.
patent: 4220934 (1980-09-01), Wafer et al.
patent: 4255732 (1981-03-01), Wafer et al.
patent: 4259651 (1981-03-01), Yamat
patent: 4263492 (1981-04-01), Maier et al.
patent: 4276527 (1981-06-01), Gerbert-Gaillard et al.
patent: 4297663 (1981-10-01), Seymour et al.
patent: 4301342 (1981-11-01), Castonguay et al.
patent: 4360852 (1982-11-01), Gilmore
patent: 4368444 (1983-01-01), Preuss et al.
patent: 4368500 (1983-01-01), Conroy et al.
patent: 4375021 (1983-02-01), Pardini et al.
patent: 4375022 (1983-02-01), Daussin et al.
patent: 4376270 (1983-03-01), Staffen
patent: 4379317 (1983-04-01), Conroy et al.
patent: 4383146 (1983-05-01), Bur
patent: 4392036 (1983-07-01), Troebel et al.
patent: 4393283 (1983-07-01), Masuda
patent: 4401872 (1983-08-01), Boichot-Castagne et al.
patent: 4409573 (1983-10-01), DiMarco et al.
patent: 4435690 (1984-03-01), Link et al.
patent: 4467297 (1984-08-01), Boichot-Castagne et al.
patent: 4468645 (1984-08-01), Gerbert-Gaillard et al.
patent: 4470027 (1984-09-01), Link et al.
patent: 4479143 (1984-10-01), Watanabe et al.
patent: 4488133 (1984-12-01), McClellan et al.
patent: 4492941 (1985-01-01), Nagel
patent: 4541032 (1985-09-01), Schwab
patent: 4546224 (1985-10-01), Mostosi
patent: 4550360 (1985-10-01), Dougherty
patent: 4562419 (1985-12-01), Preuss

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Breaker/starter with auto-configurable trip unit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Breaker/starter with auto-configurable trip unit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Breaker/starter with auto-configurable trip unit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2541126

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.