Breakaway device for fueling stations

Pipe joints or couplings – Safety release – With frangible or deformable element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C285S003000, C137S068140, C141S382000

Reexamination Certificate

active

06692034

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to fueling stations and, more particularly, to a breakaway device for shutting down a fueling station when a vehicle drives away with the dispensing hose of the fueling station attached thereto.
Both alternative fuels, such as liquid natural gas (LNG), and more conventional fuels, such as gasoline, are dispensed to vehicles via fueling stations. A fueling station typically includes a storage tank holding a supply of fuel, a dispensing hose with a coupling or nozzle that may be removably connected to a vehicle's fueling port and a pump in series between the storage tank and the dispensing hose for transferring the fuel from the storage tank to the vehicle tank. In the case of LNG or other cryogenic fuels, the fueling station typically includes a conditioning arrangement so that the fuel may be warmed and/or pressurized before delivery to the vehicle. Fueling stations often feature a housing containing some of the system components with the dispensing hose attached to a side of the housing.
In nearly all fueling stations in the United States, and in many other countries, a breakaway device is installed to the dispensing hose to avoid damage to the fueling station and/or the vehicle being fueled in the event that a user drives away from the fueling station without first disconnecting the dispensing hose from the vehicle. Even with breakaway devices, such “driveaways” can result in substantial repair costs for fueling station operators. In addition, a driveaway is harmful for the environment, and possibly for individuals as well, if a large amount of fuel is spilled.
Breakaway devices are manufactured by many companies and have various constructions. Virtually all include two pieces which are intended to uncouple when a vehicle drives away from the fueling station with the dispensing hose nozzle or coupling still connected to the vehicle.
Breakaway devices are commonly installed with one piece connected to the fueling station housing and the other piece connected to the end of the dispensing system hose that is opposite the end that is equipped with the coupling or nozzle. In one example of such an arrangement, the LNG outlet of the fueling station housing is equipped with a vertical brass nipple over which the dispensing hose is placed. A chain is attached between the dispensing hose and an emergency fueling station shutoff valve. As a result, when a driveaway occurs, the dispensing hose is pulled off of the brass nipple and the chain is pulled so that the emergency valve is closed. The chain is sized so as to break in the event that the vehicle continues to drive away from the fueling station. While such an arrangement reduces system damage and stops the flow of fuel from the station, the junction between the dispensing hose and the nipple has a tendency to leak and may also bind when a driveaway occurs so that the fueling station suffers increased damage.
Improved breakaway devices that connect between and to the fueling station housing and the dispensing hose are illustrated in U.S. Pat. No. 5,520,418 to Burke and U.S. Pat. No. 6,161,872 to Vranicar. The Vranicar '872 patent, however, is primarily directed to a device that prevents binding of the dispensing hose as it is pulled off of the nipple/male connector of the fueling station housing. As such, the breakaway arrangement of the Vranicar '872 patent still suffers from leak and hose spill issues. The Burke '418 patent also prevents binding of the dispensing hose and, in addition, provides an improved junction between the dispensing hose and the fueling station housing. The dispensing hose of the Burke '418 patent includes a valve that shuts when a driveaway occurs. The valve stays with the dispensing hose after the driveaway so that the fluid within the hose does not spill onto the ground. One must contend with the fluid in the entire length of the hose when reconnecting it to the fueling station, however. In addition, while improved, the junction of the Burke '418 patent is still susceptible to leakage issues.
Very accurate metering of cryogenic liquids during dispensing is sometimes required. The above breakaway devices all feature connectors that are attached to the fueling station housing in a vertical configuration. As a result, the hoses connected to the breakaway devices feature low points wherein liquid may be trapped after dispensing. The cryogenic liquid trapped in the hose must be vaporized and vented from the hoses before accurate dispensing may resume. A breakaway device that permits liquid in the hose to be drained after dispensing is thus desirable when accurate metering is required.
Alternative breakaway device arrangements feature couplings that are positioned in the dispensing hose a distance away from the fueling station housing. An example of such an arrangement is presented in U.S. Pat. No. 5,050,911 to Morrison. The Morrison '911 patent illustrates a device that includes male and female members that are inserted into adjacent sections of the dispensing hose. An O-ring is positioned between the overlapping joined male and female members as is a frangible locking ring. In the event of a driveaway, the locking ring breaks so that the male member may be pulled out of the female member. As a result, one of the formerly adjacent hose sections remains connected to the fueling station housing while the other remains connected to the nozzle and vehicle. While the device of the Morrison '911 patent is effective, its O-ring seal is susceptible to leakage. This is especially true in the case of cryogenic liquids where thermal cycling occurs at cryogenic temperatures. In addition, the device does not automatically stop the fueling station from operating in the event of a driveaway.
Several alternative breakaway devices include connectors that are integrated into dispensing hoses and that include valves which close when the hose sections that are joined by the connectors are pulled apart. More specifically, each half of the connector in such an arrangement includes a valve that activates during a driveaway so that fluid within each hose section is not spilled onto the ground. Examples of such an arrangement are presented in U.S. Pat. No. 5,297,574 to Healy; U.S. Pat. No. 5,454,602 to Anderson et al.; U.S. Pat. No. 5,564,471 to Wilder et al.; U.S. Pat. No. 5,695,221 to Sunderhaus; U.S. Pat. No. 5,570,719 to Richards et al.; and U.S. Pat. No. 6,050,297 to Ostrowski et al. The breakaway devices of these patents, however, are complicated and feature many separate parts. This increases their cost of manufacture and the chance of malfunctions.
Accordingly, it is an object of the present invention to provide a breakaway device for fueling station dispensing hoses that minimizes damage to the fueling station and vehicle in the event of a driveaway.
It is another object of the present invention to provide a breakaway device for fueling station dispensing hoses that limits the amount of fluid spilled in the event of a driveaway.
It is another object of the present invention to provide a breakaway device for fueling station hoses that permits liquid remaining in the hose after dispensing to be drained.
It is another object of the present invention to provide a breakaway device for fueling station dispensing hoses that operates in a consistent and reliable fashion.
It is still another object of the present invention to provide a breakaway device for fueling station dispensing hoses that does not leak during fuel delivery.
It is still another object of the present invention to provide a breakaway device for fueling station dispensing hoses that automatically stops the delivery of fuel by the station in the event of a driveaway.
It is still another object of the present invention to provide a breakaway device for fueling station dispensing hoses that is economical to produce.
Other objects and advantages will be apparent from the remaining portion of the specification.
SUMMARY OF THE INVENTION
The present invention is dire

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Breakaway device for fueling stations does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Breakaway device for fueling stations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Breakaway device for fueling stations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3306366

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.