Brazed diamond tools by infiltration

Abrasive tool making process – material – or composition – Impregnating or coating an abrasive tool

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C051S293000, C051S307000, C451S540000, C451S542000

Reexamination Certificate

active

06193770

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to tools having diamond particles formed thereon/therein, wherein the diamond particles are chemically bonded to matrix support material used to hold the diamond in place. More specifically, the diamond grit is bonded chemically in a matrix powder by a braze that can wet diamond. These tools are manufactured by the infiltration of the molten braze into a preform of matrix that contains diamond particles, thereby securing the diamond in place by a chemical bond.
2. State of the Art
Abrasive tools have long been used in numerous applications, including cutting, drilling, sawing, grinding, lapping and polishing materials. Because diamond is the hardest abrasive material, it is widely used as a superabrasive on saws, drills, and other devices which utilize the abrazive to cut, shape or polish other hard materials. The total value of such tools consumed in 1996 was over 5 billion dollars (U.S.). More than half of the these tools were consumed in sawing applications such as cutting stones, concretes, asphalts, etc.
Diamond coated tools are particularly indispensable for applications where other tools lack the hardness and durability to be practical substitues. For example, in the stone industry, where rocks are cut, drilled, and sawed, diamond tools are about the only type which are sufficiently hard and durable to make the cutting, etc., economical. If diamond tools were not used, many such industries would be economically infeasible. Likewise, in the precision grinding industry, diamond tools, due to their superior wear resistance, are uniquely capable of developing the tight tolerances required, while simultaneously withstanding wear sufficiently to be practical.
Despite the prevailing use of diamond tools, these tools have suffered from several significant limtations which have placed unnecessary limits on the useful life of the tools. One such drawback is that the diamond grit is not attached to the matrix support material in a sufficiently stong attachment to maximize useful life of the cutting, drilling, polishing, etc., body. In fact, in most cases diamond grit is merely mechanically embedded in the matrix support material. As a result, diamond grit is often knocked out or pulled out prematurely during use. Moreover, the grit may receive inadequate mechanical support form the loosely bonded matrix under work conditions. Hence, the diamond particles could be shattered by the impact of the tool against the piece to which the abrasive, etc., is applied.
It has been estimated that in a typical diamond tool, less than about one tenth of the grit is actually consumed in the intended application—i.e. during actual cutting, drilling, polishing, etc. The remainder of the diamond grit is either wasted by being leftover when the tool's useful life has expired, or is wasted by being pulled-out or broken during use due to poor attachment and inadequate support. Most of these diamond losses could be avoided if the diamond particles can be properly positioned in and firmly attached to the surrounding matrix.
Furthermore, to ensure that the diamond grit is mechanically held sufficiently to remain in place, it must be buried deep in the matrix to prevent it from falling out or being knocked free of the tool body during use. As a result, the protrusion of the diamond particle above the tool surface is insufficient. The low grit protrusion limits the cutting height for breaking the material to be cut. These limitations, in turn, limit the cutting speed of the cutting tool. If the diamond grit could be held more securely in the, matrix, it could protrude higher from the matrix. The greater cutting depth would allow increased cutting speed and a greater useful life for the product. Moreover, due to the lower friction between the workpiece and the tool matrix, the power required for cutting, drilling, etc., may also be reduced.
In order to anchor diamond grit firmly in the matrix, it is highly desirable for the matrix to form a carbide around the surface of the diamond. The chemical bond so formed is much stronger than the traditional mechanical attachment. The carbide may be formed by reacting diamond with a suitable carbide former such as a transition metal. Typical carbide forming transition metals are: titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), molybdenum (Mo), and tungsten (W).
The formation of a carbide requires that the carbide former be deposited around the diamond and that the two subsequently be caused to react to form a carbide. Moreover, the non-reacted carbide former must also be consolidated by sintering or other means. All these steps require treatment at high temperatures. However, diamond may be degraded when exposed to a temperature above 1,000° C. The degradation is due to either the reaction with the matrix material or the development of microcracks around metal inclusions inside the crystal. These inclusions are trapped catalysts used to synthesize the diamond.
Most carbide formers are refractory metals so they may not be consolidated below a temperature of about 1,200° C. Hence, refractory carbide formers are not suitable as the main constituent of the matrix support material.
There are, however, some carbide formers that may have a lower sintering temperature, such as manganese (Mn), iron (Fe), silicon (Si), and aluminum (Al). However, these carbide formers may have other undesirable properties that prohibit them from being used as the primary constituent of the matrix support material. For example, both manganese and iron are used as catalysts for synthesizing diamond at high pressure (above 50 Kb). Hence, they can catalyze diamond back to graphite during the sintering of the matrix powder at a lower pressure. The back conversion is the main cause of diamond degradation at high temperature.
Aluminum, on the other hand, has a low melting point (660° C.), thus, making it easy to work with for securing the diamond particles. However, the melting point of aluminum can be approached when a diamond grit is cutting aggressively. Hence, aluminum may become too soft to support the diamond grit during the cutting operation. Moreover, aluminum tends to form the carbide Al
4
C
3
at the interface with diamond. This carbide is easily hydrolyzed so it may be disintegrated when exposed to coolant. Hence, aluminum typically is not a suitable carbide former to bond diamond in a matrix.
To avoid the high temperature of sintering, carbide formers, such as tungsten, are often diluted as minor constituents in the matrix that is made primarily either Co or bronze. During the sintering process, there is a minimal amount, if any, of liquid phase formed. The diffusion of carbide former through a solid medium toward diamond is very slow. As a result, the formation of carbide on the surface of diamond is negligible. Therefore, by adding a carbide former as a minor matrix constituent, the improvement of diamond attachment is marginal at the best.
In order to ensure the formation of a carbide on the surface of diamond, the carbide former may be coated onto the diamond before mixing with the matrix powder. In this way, the carbide former, although it may be a minor ingredient in the matrix, can be concentrated around diamond to form the desired bonding.
The coating of diamond may be applied chemically or physically. In the former case, the coated metal is formed by a chemical reaction, generally at a relatively high temperature. For example, by mixing diamond with a carbide former such as titanium or chromium, and heated the mixture under a vacuum or in a protective atmosphere, a thin layer of the carbide former may be deposited onto the diamond. The thickness of the coating may be increased by increasing temperature. The deposition rate may also be accelerated by adding a suitable gas (e.g., HCl vapor) that assists the transport of the metal. For example, Chen and Sung (U.S. Pat. No. 5,024,680) describes such a coating process.
Alternatively, the coating may be performed in a molten salt. For exa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Brazed diamond tools by infiltration does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Brazed diamond tools by infiltration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Brazed diamond tools by infiltration will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2606787

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.