Brassiere protecting against eletrostatic field induced...

Foundation garments – Breast or chest – e.g. – brassieres – With cup-supplementing means to add volume to breast – e.g.,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C450S001000

Reexamination Certificate

active

06488564

ABSTRACT:

BACKGROUND OF THE INVENTION
I. Field of the Invention
The present invention relates generally to female breast support articles. More particularly the invention relates to breast area covering articles that minimize detrimental influence of electrostatic fields on breast area tissue.
II. Description of the Prior Art
The female breast is susceptible to several diseases of unknown origin. Worst among these diseases is breast cancer. There has been a huge, and unexplained, increase in breast cancer incidence in United States females over the past 20 years. Also, the rate of incidence continues to increase. A female in the United States today is 2.7 times more likely to incur breast cancer than her great grandmother was, and this is despite the beneficial diet and lifestyle changes that have occurred. The cause of this increase in breast cancer has not been understood, but the rate of increased cancer incidence in general is so large that the United States Department of Health and Human Services has speculated that “U.S. citizens face a growing cancer risk from some as yet unidentified environmental factors”.
The inventor has discovered, and conducted numerous rodent studies to confirm, that exposure to environmental electrostatic fields (different from environmental electromagnetic fields) can directly promote cancer growth, and can also strongly increase the detrimental affect of chemicals on living tissue. This affect may be a large factor in the increased cancer incidence rates the U.S. is experiencing. Modern synthetic materials commonly used in the U.S., for example a nylon bra rubbing against a polyester blouse, can easily generate thousands of volts of electrostatic charge. Then, because of the extensive use of air-conditioning, which keeps humidity levels low, electrostatic fields from this charge can connect with the breast tissue for hours at a time. Methods of protecting breast and adjacent tissue from detrimental effects caused by exposure to electrostatic fields forms the basis of the present invention.
It is known that magnetic fields, and the magnetic portion of electromagnetic fields, can easily penetrate living tissue. This has been of concern over the past 18 years, with many studies conducted to evaluate the possibility of a causal link between electromagnetic fields and cancer. Yet, despite these years of research, very little affect from exposure to electromagnetic fields has been confirmed. Recent large studies in this area have again found no risk from exposure to these fields at the levels we commonly encounter them (Panel Finds EMF's Pose No Threat, Science 274:910, 1996, and Magnetic Field-Cancer Link: Will It Rest In Peace?, Science 277:29, 1997).
On the other hand, little consideration has been given to the possibility of electrostatic fields (which are different from electromagnetic fields) exerting influence inside a living body. The electrostatic charges which produce these fields commonly occur when two materials rub together, for example when our clothing rubs together or against another surface. Even rubbing natural materials together creates electrostatic fields, but usually at lower levels than synthetic materials. As a result, humans are almost constantly exposed to electrostatic fields in our normal environment everyday. Also, the field influence is typically very strong because of the close proximity of the charges to the body. For example, under conditions of low ambient humidity, rubbing a shirt sleeve against a shirt, getting up from a chair, walking across a floor, can generate charges with potentials in the 30,000 volt range; however voltages in the 5,000 to 15,000 volt range are more common. Lower electrostatic potentials are almost always present around a person, even with moderate to high humidity.
However, unlike electromagnetic fields, electrostatic fields do not have a magnetic component and do not oscillate, so they have been assumed incapable of having influence inside living tissue. Quite to the contrary, the inventor has conducted numerous studies, using live animals, which leave no doubt that electrostatic fields can exert strong, and detrimental, influence inside living tissue.
As a result of the assumption that electrostatic fields do not have biological effects inside living organisms, there has been little research in the field. Several non-biological effects are known, however, and they have led to techniques for reducing electrostatic charges in certain situations.
One example of an undesirable non-biological effect of electrostatic fields is a tendency for a person who walks across a carpet when the humidity is low to generate and store electrostatic charges on the body. These charges can then be discharged into a computer or other piece of equipment that is touched, resulting in damage to the equipment. It is known that this problem can be reduced by coating the carpet fibers with an anti-static compound or by incorporating conductive materials within the carpet in order to allow charges to quickly flow back together, or to ground, as the carpet is walked upon. U.S. Pat. No. 4,490,433 is an example of this technology.
Another undesirable non-biological effect is that the field from an electrostatic discharge may ruin modern electronic components during equipment manufacture. Some semiconductor devices can be damaged by an electrostatic discharge as low as 30 volts, and as a result the electronics industry is a leader in using the broadest range of electrostatic charge prevention methods. The Electrostatic Discharge Association, 200 Liberty Plaza, Rhome, N.Y. 13440, an electronics industry association “dedicated to advancing the theory and practice of electrostatic discharge avoidance”, has many publications available on electrostatic charge generation, elimination, and test standards for the electronics industry. One known technique for reducing damage from electrostatic discharge is for assembly workers and others who handle sensitive components to wear conductive work garments (such as lab coats or jump suits) with grounding leads to drain off electrostatic charges. Similarly, conductive lab coats, etc., are used to prevent electrostatic sparks in areas where explosive gases are present. U.S. Pat. Nos. 4,422,483 and 4,590,623 show examples of this technology.
Another technique for reducing damage from electrostatic discharge is to use ion generators to cancel electrostatic charges on surfaces. Generators of this type use high-voltage corona discharge, or nuclear (alpha particle) energy, to ionize air molecules. These systems typically produce and blow negative and positive ions into the air, where they are attracted to combine with and cancel electrostatic charges in the vicinity. U.S. Pat. Nos. 5,008,594 and 5,017,876 show examples of this technology.
Attempts to protect the body from electric fields in general are also shown in the prior art. The methods generally involve covering the body area desired to be protected with a shielding layer in the form of metal or other conductive material. UK patent GB 2,025,237, and U.S. Pat. Nos. 4,825,877, 5,621,188 and 5,690,537, show examples of this technology. Some of these references principally address shielding electromagnetic fields, which are completely different from static electric fields. The references that mention electrostatic fields make the erroneous assumption that a conductive shielding layer will stop electrostatic field influence as well as it does electromagnetic field influence.
The requirements for preventing influence from electrostatic fields are totally different than that required for electromagnetic fields. A conductive shielding layer will block passage of an electromagnetic field because as the oscillating field impacts the conductive layer it induces currents that produce electric and magnetic fields in the layer. As these fields are created, they reinforce the electromagnetic field on the incident side of the layer, but are out of phase with, and oppose and cancel, the field on the other side of the layer.
To the contrary, simply pl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Brassiere protecting against eletrostatic field induced... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Brassiere protecting against eletrostatic field induced..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Brassiere protecting against eletrostatic field induced... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2964209

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.