Expansible chamber devices – Piston – With separable means for pivotally mounting connecting rod...
Reexamination Certificate
2003-09-03
2004-11-09
Lazo, Thomas E. (Department: 3745)
Expansible chamber devices
Piston
With separable means for pivotally mounting connecting rod...
C403S141000
Reexamination Certificate
active
06813991
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to a brake system as well as to a load-transmitting arrangement with articulated function in particular for said brake system. The load-transmitting arrangement is used to take up and transmit a pedal force and comprises a first load-transmitting member, which has a receiving sleeve for a second load-transmitting member, wherein an end of the second load-transmitting member that projects into the receiving sleeve engages behind a snap element, which locks the second load-transmitting member against withdrawal from the receiving sleeve.
A brake system having such a load-transmitting member is known from DE 198 43 316 A1, which is incorporated by reference herein. The known load-transmitting arrangement comprises a first load-transmitting member in the form of an input member, which is a component of a master brake cylinder or of a brake booster. The input member on its end facing the brake pedal has a receiving sleeve, into which a second load-transmitting member in the form of an actuating rod projects. The end of the actuating rod that projects into the receiving sleeve is designed as a ball head. The ball head of the actuating rod interacts with a snap device, which is disposed in the receiving sleeve and takes the form of a spring sleeve having a plurality of spring elements.
In order to couple the actuating rod to the input member the actuating rod is inserted into the sleeve-shaped receiver. In said case, the ball head bends the radially inwardly projecting spring elements of the spring sleeve radially outwards. As soon as the actuating rod has been fully inserted into the sleeve-shaped receiver, the spring elements are able to snap back again. The snapped-back spring elements engage behind the ball head and hence lock the actuating rod against withdrawal from the receiving sleeve. The spring elements therefore enable a durable rapid connection between the input member and the actuating rod.
In order to realize an articulated function, the end of the input member remote from the brake pedal is designed as a joint head, which lies in a joint socket of a piston of the brake booster or of the master brake cylinder. Said articulated arrangement allows an angular deflection of the input member relative to the piston, in which the joint socket is formed. An angular deflection of the input member relative to the actuating rod, on the other hand, is prevented by the fact that the inside diameter of the receiving sleeve formed integrally with the input member is only slightly greater than the outside diameter of the actuating rod. In other words, with regard to an angular deflection the actuating rod is accommodated substantially without play inside the receiving sleeve.
For various reasons it would be desirable to allow an angular deflection of the actuating piston inside the receiving sleeve relative to the input member, while maintaining the rapid connection. Then, for example, instead of the three-part design of the load-transmitting arrangement a two-part style of construction might be selected. This would also make it possible to reduce the minimum overall length of the load-transmitting arrangement.
Since according to DE 198 43 316 A1 the end of the actuating rod that projects into the receiving sleeve is already provided with a ball head, which lies in a joint socket formed at the base of the receiving sleeve, it might be conceivable to provide play between the outside diameter of the actuating rod and the inside diameter of the receiving sleeve. The actuating rod might then be swivelled inside the receiving sleeve. The drawback of this is however that the spring elements, which engage behind and directly abut the joint head, as a result of swivelling motions of the actuating rod are continuously subject to angular deflections which after only a short time would lead to fatigue fracture of the spring tongues.
From U.S. Pat. No. 5 163 773, which is incorporated by reference herein, a further load-transmitting arrangement with articulated function is known. The known load-transmitting arrangement comprises a first load-transmitting member, which has a receiving sleeve, into which a joint head of a second load-transmitting member may be introduced. To prevent withdrawal of the second load-transmitting member from the receiving sleeve, a sleeve embracing the joint head is provided, in which the joint head is pivotally supported and which by means of a plurality of snap elements is supported in a stationary manner in the interior of the receiving sleeve.
SUMMARY OF THE INVENTION
An object of the invention is to provide an operationally reliable load-transmitting arrangement in particular for a brake system, in which a first load-transmitting member is connectable in a pivotal manner and by means of a rapid connection to a second load-transmitting member.
In a load-transmitting arrangement of the initially described type said object is achieved in that the end of the second load-transmitting member that engages behind the snap element is a joint head, which is pivotally supported inside the receiving sleeve, the second load-transmitting member being pivotally coupled to a support device, against which the snap device is supported in a non-pivotal manner. In a brake system according to the invention the first of the two load-transmitting members may form the input member for actuating a braking device, e.g. a brake-pressure generating unit or a brake booster, and the second of the two load-transmitting members may function as an actuating rod, which is to be connected to the brake pedal.
In the load-transmitting arrangement according to the invention the support device prevents a swivelling motion of the load-transmitting member disposed in the receiving sleeve from being transmitted to the snap device, which locks said load-transmitting member against withdrawal. The snap device is consequently uncoupled by means of the support device from swivelling motions of the load-transmitting member disposed in the receiving sleeve. Said uncoupling therefore prevents swivelling motions between the two load-transmitting members from causing fatigue fractures in the snap device.
The support device is preferably connected in a pivotal but axially immovable manner to the load-transmitting member disposed in the receiving sleeve. After said load-transmitting member has been introduced into the receiving sleeve, the support device as well as the joint head may engage behind the snap element. The snap element may then be supported by means of the support device e.g. against the receiving sleeve or against the load-transmitting member on which the receiving sleeve is formed. Inside the receiving sleeve the support device may abut a stop or a slope and be biased by a resiliently designed snap element towards the receiving sleeve or the load-transmitting member on which the receiving sleeve is formed. In said case, after establishment of the rapid connection between the two load-transmitting members the support device is fixed in axial direction inside the receiving sleeve and connected in a non-pivotal and non-rotatable manner to the support device.
The support device may be designed in various ways. For example, according to a first embodiment it is possible to provide an annular support device, which is supported rotatably and pivotally on the load-transmitting member to be introduced into the receiving sleeve and may be situated in abutment with the joint head. The annular support device at its side facing the joint head preferably comprises a bearing surface for the joint head. After the load-transmitting member has been introduced into the receiving sleeve, the annular support device may abut a step inside the receiving sleeve. According to a second, preferred embodiment the support device embraces the joint head at least in sections and is pivotable relative to the latter. In said case too, the support device in the style of a joint socket may additionally function as a bearing for the joint head. A joint socket for supporting the joint head
Lazo Thomas E.
Lucas Automotive GmbH
MacMillan Sobanski & Todd LLC
LandOfFree
Braking system and force transmission assembly therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Braking system and force transmission assembly therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Braking system and force transmission assembly therefor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3304438