Braking response and following distance monitoring and...

Communications: electrical – Condition responsive indicating system – Specific condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S576000, C340S435000, C340S438000, C340S439000, C340S903000, C701S028000, C701S029000, C701S035000

Reexamination Certificate

active

06788207

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to systems for registering and recording the braking response time and average following distance for operators of commercial or private motor vehicles and other human-operated equipment. In particular, the present invention relates to systems for detecting, monitoring, and storing braking response time and following distance data, as well as other safety parameter data (e.g. acceleration/deceleration), for immediate usage or later retrieval.
2. Description of the Background
Safe operational conditions for any motor vehicle require its operator to exhibit adequate braking response time and reasonable judgement with regard to the distance at which he/she follows the vehicle directly in front. An operator's response time and judgement should not exceed parameters that (1) represent sensible driving tactics based on existing road conditions (i.e. parameters for good versus inclement weather conditions would vary), (2) represent sensible driving tactics based on existing road design (i.e. curving/winding roads, or uphill/downhill sections where the posted speed limit is incompatible with driving in good/excellent weather conditions), (3) may be indicated by excessive brake system wear, and (4) demonstrate that the vehicle has been operated in an unsafe manner.
In order to reduce insurance and other expenses caused by injuries to employees, employers of truck drivers or large commercial equipment operators often set forth safety policies including guidelines for vehicle operation. These typically include guidelines for braking that include parameters such as the weight of the vehicle being operated and the distance at which the vehicle operator follows the vehicle directly ahead. Maintaining an adequate following distance is critical in bringing a vehicle safely to a stop. Additionally, an operator's brake response time (i.e. the time between recognizing/acknowledging that the brakes need to be applied and the moment that the brake system is engaged) must be considered when establishing an appropriate following distance parameter. Unfortunately, the prior art devices lack any method of consistently and accurately measuring and recording an individual's operation of a vehicle, making the policing of any such guidelines extremely difficult.
Systems for monitoring vehicular use are well known in the prior art. For example, U.S. Pat. No. 5,754,964 to Rettig et al. discloses an apparatus and method for storing various vehicle operating characteristics upon sensing a vehicle acceleration having a magnitude that exceeds a predetermined limit. In this manner, the vehicle owner or fleet manager can determine whether the vehicle operator uses the service brakes excessively. While this invention is drawn specifically to the braking process, it does not include means for determining the average or instantaneous following distance to the vehicle immediately ahead or an operator's response time. It also fails to, during the braking event, record the time or position of the vehicle while the acceleration parameter is being measured.
A second example is that of U.S. Pat. No. 5,570,087 to Lemelson. It discloses a system and method for monitoring the performance of a motor vehicle. The vehicle's instantaneous accelerations in at least two directions are continually sensed and stored as coded signals in a computer memory along with associated time and date codes. By means of inertial navigation and/or radio transmissions from global positioning system satellites, the vehicle's global position is also computed and stored. The stored performance variables are analyzed over a period of time in order to evaluate how the vehicle is being driven. When an erratic or otherwise hazardous driving pattern is detected, signals may be generated to warn the driver and/or traffic authorities. However, this system also fails to include means for determining the average or instantaneous following distance to the vehicle immediately ahead or an operator's response time.
In light of the above information, it would, therefore, be advantageous to provide a system for accurately and consistently measuring and recording the brake response time and average following distance for the operators of private/commercial vehicles and heavy equipment. Operational liability could be reduced if unsafe braking practices/habits could be identified and corrected for any given operator, inclusive of factors such as road, vehicle, or weather conditions.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide a system for detecting, measuring, and recording the brake response time and average following distance for the operators of private/commercial vehicles and heavy equipment.
It is another object of the present invention to provide a system for measuring and recording other safety-related information in such vehicles, such as date/time of occurrence and vehicle position.
It is a further object of the present invention to organize the data retrieved from the various sources herein described into a usable and consistent record, which can then be compiled with like records to analyze brake response time, following distance, and other safety parameters in a comprehensive and statistical manner.
It is a further object of the present invention to provide the above objects in an economical and facile manner, using existing, commercially available components to the extent practical.
In accordance with the above objects, an improved brake response time and following distance monitoring and safety data accounting system is provided which measures and records events where preset parameters are exceeded. Specifically, the present invention measures and records, among others, parameters associated with instantaneous vehicular following distance, average vehicular following distance, instantaneous changes in following distance, and brake response time of an operator. The system is equipped with data processing and communication means allowing an employer, a parent, an insurance carrier, or any other interested person to verify that the vehicle in question is operated in an appropriate manner. The present invention records each vehicle braking cycle to determine if previously established safe operating parameters were maintained while noting the date, time of day, and location of the incident. The information retrieved is compiled in a data record and stored in a storage system for instantaneous use or retrieval when desired.


REFERENCES:
patent: 4833469 (1989-05-01), David
patent: 5446659 (1995-08-01), Yamawaki
patent: 5570087 (1996-10-01), Lemelson
patent: 5629669 (1997-05-01), Asano et al.
patent: 5699040 (1997-12-01), Matsuda
patent: 6067488 (2000-05-01), Tano

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Braking response and following distance monitoring and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Braking response and following distance monitoring and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Braking response and following distance monitoring and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3225274

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.