Braided stent

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001530, C623S001110

Reexamination Certificate

active

06494907

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to intravascular stent implants for maintaining vascular patency in humans and animals and more particularly to a stent in the form of a braided stent.
BACKGROUND OF THE INVENTION
Percutaneous transluminal coronary angioplasty (PTCA) is used to increase the lumen diameter of a coronary artery partially or totally obstructed by a build-up of cholesterol fats or atherosclerotic plaque. Typically a first guidewire of about 0.038 inches in diameter is steered through the vascular system to the site of therapy. A guiding catheter, for example, can then be advanced over the first guidewire to a point just proximal of the stenosis. The first guidewire is then removed. A balloon catheter on a smaller 0.014 inch diameter second guidewire is advanced within the guiding catheter to a point just proximal of the stenosis. The second guidewire is advanced into the stenosis, followed by the balloon on the distal end of the catheter. The balloon is inflated causing the site of the stenosis to widen. The dilatation of the occlusion, however, can form flaps, fissures and dissections which threaten reclosure of the dilated vessel or even perforations in the vessel wall. Implantation of a metal stent can provide support for such flaps and dissections and thereby prevent reclosure of the vessel or provide a patch repair for a perforated vessel wall until corrective surgery can be performed. It has also been shown that the use of intravascular stents can measurably decrease the incidence of restenosis after angioplasty thereby reducing the likelihood that a secondary angioplasty procedure or a surgical bypass operation will be necessary.
An implanted prosthesis such as a stent can preclude additional procedures and maintain vascular patency by mechanically supporting dilated vessels to prevent vessel reclosure. Stents can also be used to repair aneurysms, to support artificial vessels as liners of vessels or to repair dissections. Stents are suited to the treatment of any body lumen, including the vas deferens, ducts of the gallbladder, prostate gland, trachea, bronchus and liver. The body lumens range in diameter from small coronary vessels of 3 mm or less to 28 mm in the aortic vessel. The invention applies to acute and chronic closure or reclosure of body lumens.
A typical stent is a cylindrically shaped wire formed device intended to act as a permanent prosthesis. A typical stent ranges from 5 mm to 50 mm in length. A stent is deployed in a body lumen from a radially compressed configuration into a radially expanded configuration which allows it to contact and support a body lumen. The stent can be made to be radially self-expanding or expandable by the use of an expansion device. The self expanding stent is made from a resilient springy material while the device expandable stent is made from a material which is plastically deformable. A plastically deformable stent can be implanted during a single angioplasty procedure by using a catheter bearing a stent which has been secured to the catheter such as in U.S. Pat. No. 5,372,600 to Beyar et al. which is incorporated herein by reference in its entirety.
The stent must be reduced in size to facilitate its delivery to the intended implantation site. A coil stent is delivered by winding it into a smaller diameter and fixing it onto a delivery catheter. When the device is positioned at the desired site, the coil is released from the catheter and it either self-expands by its spring force or it is otherwise mechanically expanded to the specified dimension.
As with many stents, the deformation of the stent when it is assembled on the delivery catheter causes a strain in the stent material. If the strain is too large the material will experience plastic deformation to such an extent that the stent will not recover to the intended dimensions following deployment. This is true of superelastic or pseudoplastic alloys such as disclosed in U.S. Pat. No. 5,597,378 issued to Jervis, which is incorporated herein by reference in its entirety. Thus a maximum allowable strain based on material is a limiting parameter in stent design.
Two parameters influence the amount of strain a stent will experience during the deformation described above. The first is the degree of deformation applied to the stent and the second is the thickness of the stent material. For a given deformation, the strain experienced by a material is proportional to the thickness of the material. Since it is desirable to deliver a stent on the smallest delivery system possible it follows that the thickness of the stent material should be reduced to keep the strain within acceptable parameters. When forming a stent with a single solid strand (such a length of solid wire), a limit will be reached where the thickness of material becomes so small that the stent will meet the maximum allowable strain but will no longer have the hoop strength to provide adequate scaffolding.
Current helical coil stents are delivered on the smallest profile catheter that the stent will allow. Strain on the stent during assembly on the catheter is the limiting factor with stents made from solid round or flat wire helical coil stents.
U.S. Pat. No. 5,342,348 to Kaplan for “Method and Device for Treating and Enlarging Body Lumens” discloses a single helically wound strand and two counterwound delivery matrix filaments. A two stranded stent is shown in U.S. Pat. No. 5,618,298 to Simon for “Vascular Prosthesis Made of Reasorbable Material”.
Mesh stents are disclosed in U.S. Pat. No. 5,061,275 to Wallsten et al. for “Self-Expanding Prosthesis”, U.S. Pat. No. 5,064,435 to Porter for “Self-Expanding Prosthesis Having Stable Axial Length”, U.S. Pat. No. 5,449,372 to Schmaltz et al. for “Temporary Stent and Methods for Use and Manufacture”, U.S. Pat. No. 5,591,222 to Susawa et al. for “Method of Manufacturing a Device to Dilate Ducts in Vivo”, U.S. Pat. No. 5,645,559 to Hachtmann et al. for “Multiple Layer Stent”, U.S. Pat. No. 5,718,169 to Thompson for “Process for Manufacturing Three-Dimensional Braided Covered Stent”.
Woven mesh stents typically have warp and weft members as disclosed in U.S. Pat. No. 4,517,687 to Liebig et al. for “Synthetic Woven Double-Velour Graft”, U.S. Pat. No. 4,530,113 to Matterson for “Vascular Grafts with Cross-Weave Patterns”, U.S. Pat. No. 5,057,092 to Webster for “Braided Catheter with Low Modulus Warp” and EP 122,744 to Silvestrini for “Triaxially-braided Fabric Prosthesis”. The warp strands are typically the strands in the longitudinal direction on a prosthesis. The weft strands are typically the strands which are shuttled through warp strands to form a two dimensional array.
WO 95/29646 to Sandock for a “Medical Prosthetic Stent and Method of Manufacture” discloses a geometric pattern of cells defined by a series of elongate strands extending to regions of intersection and interlocking joints at regions of intersections formed by a portion of at least one strand being helically wrapped about a portion of another.
Various helical stents are known in the art. U.S. Pat. No. 4,649,922 to Wiktor for “Catheter Arrangement Having A Variable Diameter Tip and Spring Prosthesis” discloses a linearly expandable spring-like stent. U.S. Pat. No. 4,886,062 to Wiktor for “Intravascular Radially Expandable Stent and Method of Implant” discloses a two-dimensional zig-zag form, typically a sinusoidal form. U.S. Pat. No. 4,969,458 to Wiktor for “Intracoronary Stent and Method of Simultaneous Angioplasty and Stent Implant” discloses a stent wire coiled into a limited number of turns wound in one direction then reversed and wound in the opposite direction with the same number of turns, then reversed again and so on until a desired length is obtained.
Braiding is a well known craft. See Braidmaking by Barbara Pegg, published by A & C Black Ltd, 35 Bedford Row, London WC1R 4JH, pp. 9-16 which is hereby incorporated by reference.
It is an object of the invention to produce a stent which has the ability to tolerate greater deformations, yet has a smaller profile to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Braided stent does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Braided stent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Braided stent will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2954020

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.