Bottom hole assembly

Wells – Processes – Placing fluid into the formation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S177500, C166S181000

Reexamination Certificate

active

06832654

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to packers for use in wellbores. More particularly, this invention relates to a bottom hole assembly for use with coiled tubing for the purpose of testing or fracturing (“fracing”) a well.
2. Description of the Related Art
In the drilling and production of oil and gas wells, it is frequently necessary to isolate one subterranean region from another to prevent the passage of fluids between those regions. Once isolated, these regions or zones may be fraced as required.
Many stimulation techniques for given types of wells are better suited to using coiled tubing as opposed to solid mechanical structures such as wirelines. Generally, it is known to attach a packing device, such as a straddle packer, to a line of coiled tubing and run the packing device downhole until the desired zone is reached. Once positioned, the fracing proppant or sand slurry may be forced into the zone.
However, utilizing coiled tubing to fracture multiple zones can be problematic. The coiled tubing is generally weaker in tensile and compressive strength than its mechanical counterparts. Thus, coiled tubing may be unable to remove a bottom hole assembly that becomes lodged in the casing. Additionally, fracing facilitates the lodging of the bottom hole assembly in the casing as sand tends to accumulate throughout the bottom hole assembly. Thus, a fracing process which (1) requires multiple fracture treatments to be pumped via the coiled tubing and (2) requires that the bottom hole assembly to be repositioned within the multiple zones between treatments is a collision of objectives.
Additionally, the fracing process may be compromised if the proppant is underflushed such that sand slurry remains within the bottom hole assembly and even the coiled tubing. The additional sand can lodge between the bottom hole assembly and the casing. Consequently the coiled tubing may be partially plugged after each treatment.
Further, in the event that the well's casing integrity is breached, it is possible that proppant could be pumped into the well above the zone being treated, leading to the possibility of the coiled tubing being stuck in the hole. Further, the coiled tubing process requires the use of a zonal isolation tool or bottom hole assembly to be fixed to the downhole end of the coiled tubing. The tool may occupy almost the full cross-sectional area of the well casing which increases the risk of the tool or bottom hole assembly being lodged or stuck in the wellbore casing.
Once the bottom hole assembly becomes lodged, due to excess sand from the proppant becoming lodged between the bottom hole assembly and the wellbore casing, the tensile strength of the coiled tubing generally is not strong enough to be able to dislodge the bottom hole assembly. Therefore, the coiled tubing must be severed from the bottom hole assembly and retracted to surface. The bottom hole assembly must then be fished out of the well bore, or drilled or milled out of the well. These procedures increase the time and cost of fracing a zone.
Coiled tubing operations in deeper wells present another problem to operators trying to retrieve the bottom hole assembly and/or coiled tubing from a deep well. It is known to install release tools between the coiled tubing and the bottom hole assembly. Should it be desired to release the bottom hole tool, e.g. because the bottom hole assembly is irreparerably lodged in the casing, an upward force may applied to the coiled tubing to the release tool. The release tool is designed for the application of a known release force—less than the maximum force of the coiled tubing—upon which the release tool will release the bottom hole assembly, e.g. by shearing pins in the release tool. For shallow wells, the release force can be established at some given value less than the maximum strength of the coiled tubing.
However, in relatively deep wells, the weight of the coiled tubing detracts from the maximum force that may be applied to the release tool. Thus, the relase force cannot be known with certainty. In very deep wells, only a relatively small upward force may be applied to the bottom hole assembly, as the weight of the coiled tubing becomes substantial compared to the maximum force the coiled tubing can withstand. Thus, if the release force is set to low, the bottom hole assembly may be mistakenly released while operating in shallow portions of the well. However, if the release force is set high enough so that the bottom hole assembly will not be inadvertently released in the shallow portion of the well, then, when the bottom hole assembly is at deeper portions of the well, the coiled tubing may not have sufficient strength to overcome the weight of the coiled tubing to apply the required release force. Thus, the bottom hole assembly may become stuck in a deep well and the coiled tubing may not be able to retrieve it.
Fracing with coiled tubing can present yet another problem. In other coiled tubing operations, clean fluids are passed through the coiled tubing. Thus, fluid communication is generally maintained between the bottom hole assembly and the surface via the coiled tubing. However, in the fracing process, sand is pumped through the coiled tubing. The sand may become lodged in the coiled tubing, thus preventing fluid communication between the bottom hole assembly and the surface, thus lessening the likelihood that the bottom hole assembly may become dislodged once stuck.
Additionally, current fracturing work done on coiled tubing typically may experience communication between zones on a not-insignificant number of jobs (e.g. approximately 20% of the jobs). Communication between zones occurs due to poor cement behind the casing. Therefore the sand slurry exits in the zone above the zone being treated instead of into the formation. This sand could build up for some time before the operator realizes what has occurred. This sand build up again may lodge the down hole assembly in the wellbore.
Straddle packers are known to be comprised of two packing elements mounted on a mandrel. It is known to run these straddle packers into a well using coiled tubing. Typical inflatable straddle packers used in the industry utilize a valve of some type to set the packing elements. However, when used in a fracing procedure, these valve become susceptible to becoming inoperable due to sand build up around the valves.
One type of straddle packer used with coiled tubing is shown in FIG.
1
. This prior art straddle packer
1
comprises two rubber packing elements
2
and
3
mounted on a hollow mandrel
4
. The packing elements
20
and
30
in constant contact with casing
10
as the straddle packer is moved to isolate zone after zone.
In operation, the straddle packer
1
is run into the wellbore until the packers
2
and
3
straddle the zone to be fraced
30
. Proppant is then pumped through the coiled tubing, into the hollow mandrel
4
, and out an orifice
5
in the mandrel
4
, thus forcing the proppant into the zone to be fraced
30
. This type of straddle packer typically can only be utilized with relatively low frac pressures, in lower temperatures, and in wellbores of shallower depth. Wear on the packing elements
2
and
3
is further intensified when a pressure differential exists across the packer thus forcing the packing elements
2
and
3
to rub against the casing
10
all that much harder.
These prior art packers may be used in relatively shallow wells. Shallow wells are capable of maintaining a column of fluid in the annulus between the mandrel and the casing, to surface. The straddle packer when used to frac a zone is susceptible to becoming lodged in the casing by the accumulation of sand used in the fracing process between the annulus between the mandrel
4
and the casing
10
. To prevent the tool from getting lodged, it is possible with these prior art packers used in shallow wells to clean out the sand by reverse circulating fluid through the tool. Fluid is pumped down the annulus, and then reversed back u

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bottom hole assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bottom hole assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bottom hole assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3312112

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.