Surgery – Instruments – Orthopedic instrumentation
Reexamination Certificate
1999-12-30
2001-12-11
Philogene, Pedro (Department: 3732)
Surgery
Instruments
Orthopedic instrumentation
C606S096000, C606S180000, C408S24100G
Reexamination Certificate
active
06328744
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to forming channels through bones and especially to threading such channels with sutures.
BACKGROUND OF THE INVENTION
Attaching a suture to a bone is a task that is well known in the art of surgery. A common solution is to screw a threaded screw into the bone. However, screwdrivers used to perform this task are often complex and/or expensive. Another solution described for example in U.S. Pat. No. 5,520,700 to Beyar et al., the disclosure of which is incorporated herein by reference, is to insert a threaded bone anchor into the bone. A disadvantage of both this and the previous techniques is that a hard foreign body is left implanted in the body. In general, it is desirable to leave as small an amount as possible of foreign material in the human bone. Additionally, screws and bone anchors typically cause a considerable amount of trauma to the bone, which trauma is undesirable.
PCT publication WO 97/47246, the disclosure of which is incorporated herein by reference, describes a suture insertion device that purports to form channels in a bone for the suture to be tied through the channel. The needles suggested in this PCT publication for forming a curved channel are either curved or are super-elastic needles that are supposed to curve inside the bone. In general, these needles are inserted into the bone at a perpendicular thereto by pushing them along a suitable bore. An alterative method suggested is drilling using a rotary drill, along a curved path. However, it is noted that drills usually damage a large amount of bone.
Biolectron, Inc. provides a device (“CurvTek”) which drills along a curved path in a bone, from two ends of the path, using air-pressure powered rotary drill bits,
SUMMARY OF THE INVENTION
An object of some preferred embodiments of the invention is to provide a method of fixing a suture to a bone, while causing a minimum of damage to the bone and/or a minimum of implanted foreign objects, especially a minimum of implanted hard objects.
An aspect of some preferred embodiments of the invention relates to mounting a bone-boring needle on a rotary hinge. One desirable result of this structure is that transfer of power to the tip of the needle is more efficient. Another desirable result is a simpler construction. Another desirable result is obtaining a more controllable and/or known path inside the bone. It should be noted that some or all of these desirable results (and others described herein) might not be achieved in some preferred embodiment of the invention.
An aspect of some preferred embodiments of the invention relates to boring a channel through a bone using two opposing needles. One desirable result is that more of the force applied to the needles is utilized to bore into the bone, rather than for pushing the needle away from the bone. In some embodiments, the needles are in a same plane. Preferably, the needles are curved. Alternatively, the needles are straight. In some embodiments, an anvil which does not enter the bone, but which provides a contra-force to the other needle replaces one of the needles.
An aspect of some preferred embodiments of the invention relates to a cross-section of needles used for boring in bone. Preferably the needles are smooth. Alternatively, the needles are grooved. Preferably the cross-section is circular, however, other cross-sections, such as flat-rectangular, triangular and ellipsoid may also be provided. Optionally, the cross-sectional shape varies along the length of the needle, for example providing a spiraling cross-section.
An aspect of some preferred embodiments of the invention relates to inserting a bone-boring needle into a bone at an angle substantially different from a perpendicular. Preferably, two or more needles are provided, facing each other and applying force to the bone at the same time, in opposite directions and having a main force vector pointed towards a common point.
An additional result of entering the bone at the non-perpendicular angle is that, even in a flat or concave bone, the resulting path is not a full half circle, but only an arc of a circle. In some cases, as described herein, a path which is more than a half circle may be bored. Although an arc path is preferred, in some preferred embodiments of the invention other curves may be formed. Further, although the curves are preferably planar, in some embodiments of the invention, the curves are non-planar, for example being bi-planar (each of two halves of the curve in a different plane).
An aspect of some preferred embodiments of the invention relates to a method of boring a hole in a bone in which a cortex of a bone is penetrated using a drill and a medulla of the bone is bored using one or two needles. In a preferred embodiment of the invention, the drills are straight and the needles are curved, so the needles meet inside the bone. Preferably, the drills do not move other that rotation around their axis. Alternatively, the drills travel along a curved path, for example one defined by the needles. Alternatively or additionally to the needles being curved, the needles are straight. In a preferred embodiment of the invention, the needles (and, optionally, the thread) pass through the drill bits.
An aspect of some preferred embodiments of the invention relates to a drill bit for drilling in bone that includes an aperture for the extension of a needle through the aperture in the drill bit. Preferably, the aperture is in the side of the drill bit. In a preferred embodiment of the invention, the drill bit is mounted in a drill head that mechanically synchronizes the angular position of the drill bit and the extension of the needle. Alternatively, when the needles advance, the drill bits arm released to rotate freely, so that the advance of a needle can rotate the drill bit to a desired angular position. Alternatively, an electrical synchronization method is used, for rotating the drill bits a complete number of rotations so that they are properly aligned when they stop. Alternatively, the needle exits through the tip of the drill bit. Optionally, the needle forms a hole in the drill bit when it extends. Alternatively or additionally, the drill bits reciprocate, instead of rotating.
An aspect of some preferred embodiments of the invention relates to a method of transferring power from a power source to a tip of a bone-boring needle. Preferably, the power is applied using a lever. In a preferred embodiment of the invention, a main leverage point is provided at or about the needle. Optionally, a second leverage point is provided further away from the needle and remote from the power source. In a preferred embodiment of the invention, the power source is a human hand that moves a lever relative to a handle. The movement of this handle-lever is transferred, preferably using a cable or a bar to a second lever near the bone-boring needle. One desirable result of providing the leverage near the needle is that a less rugged construction is possible. Possibly, the bone-boring device is flexible rather than rigid.
An aspect of some preferred embodiments of the invention relates to a method of threading a bore. In a preferred embodiment of the invention, two needles are inserted from either side of the bore. The needles meet and when one needle is retracted, it pulls the other needle and a tread attached thereto along with it. In a preferred embodiment of the invention, the needles form the bore when they are inserted. Alternatively, first the bore is formed and then the needles are inserted.
An aspect of some preferred embodiments of the invention relates to a tip exchange mechanism, in which a sharp tip attached to a thread is exchanged between two needles that meet inside a bone. In a preferred embodiment of the Invention, the tip is mounted at the end of a needle and forms a boring tip. When the two needles meet the tip is captured by the other needle and retracts with it, pulling a thread along with it. Alternatively, the tip includes a long flexible extension, to which extension the thread is atta
Beyar Mordechay
Globerman Oren
Harari Boaz
American Medical Systems Inc.
Inskeep James W.
Oppenheimer Wolff & Donnelly LLP
Philogene Pedro
LandOfFree
Bone suturing device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bone suturing device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bone suturing device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2591126