Bone morphogenetic protein-16 (BMP-16)antibodies

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S387100, C530S387900, C530S388100, C530S388230, C530S388240, C530S389100, C530S389200

Reexamination Certificate

active

06623934

ABSTRACT:

The present invention relates to a novel family of purified proteins designated as Bone Morphogenetic Protein-16 (BMP-16) and BMP-16-related proteins, DNA encoding them, and processes for obtaining them. These proteins may be used to induce bone and/or cartilage or other connective tissue formation, and in wound healing and tissue repair. These proteins may also be used for augmenting the activity of other bone morphogenetic proteins.
BACKGROUND OF THE INVENTION
The search for the molecule or molecules responsible for the bone-, cartilage-, and other connective tissue-inductive activity present in bone and other tissue extracts has led to the discovery of a novel set of molecules called the Bone Morphogenetic Proteins (BMPs). The structures of several proteins., designated BMP-1 through BMP-15 have previously been elucidated. The unique inductive activities of these proteins, along with their presence in bone, suggests that they are important regulators of bone repair processes, and may be involved in the normal maintenance of bone tissue. There is a need to identify whether additional proteins, particularly human proteins, exist which play a role in these processes. The present invention relates to the identification of such a novel human protein, which the inventors have designated human BMP-16.
Human BMP-16 is the human homolog of a( murine protein called Nodal. The nucleotide and amino acid sequences of Nodal are described in Zhou et al., Nature, 361:543-547 (1993). The murine Nodal gene has been described as being expressed in the mouse node during gastrulation. A retrovirally induced insertional mutation of the murine Nodal gene results in the absence of mesodermal cell types normally associated with the primitive streak, and is embryonic lethal. Conlon et al., Development 120:1919-1928 (1994); Conlon et al., Development 111:969-981 (1991).
SUMMARY OF THE INVENTION
As used herein, the term BMP-16 protein refers to the human BMP-16 protein, having the amino acid sequence specified in SEQUENCE ID NO:2, as well as DNA sequences encoding the BMP-16 protein, such as the native human sequence shown in SEQUENCE ID NO: 1. Also included are naturally occurring allelic sequences of SEQUENCE ID NO: 1 and 2, and equivalent degenerative codon sequences of the above.
The BMP-16 DNA sequence (SEQ ID NO: 1) and amino acid sequence (SEQ ID NO: 2) are set forth in the Sequence Listings. BMP-16 proteins may be capable of inducing the formation of cartilage, bone, or other connective tissue, or combinations thereof. The cartilage and/or bone and/or other connective tissue formation activity in the rat bone formation assay described below. BMP-16 proteins may be further characterized by the ability to demonstrate effects upon the growth and/or differentiation of embryonic cells and/or stem cells. Thus, the proteins or compositions of the present invention may also be useful for treating cell populations such as embryonic cells or stem cell populations, to enhance or enrich the growth and/or differentiation of the cells.
Human BMP-16 protein may be produced by culturing a cell transformed with a DNA sequence comprising nucleotide a DNA sequence encoding the mature BMP-16 polypeptide, comprising nucleotide #511 to nucleotide #840 as shown in SEQ ID NO: 1, and recovering and purifying from the culture medium a protein characterized by the amino acid sequence comprising amino acids #1 to #110 as shown in SEQ ID NO:2 substantially free from other proteinaceous materials with which it is co-produced. For production in mammalian cells, the DNA sequence further comprises a DNA sequence encoding a suitable propeptide 5′ to and linked in frame to the nucleotide sequence encoding the mature BMP-16-related polypeptide. The propeptide may be the native BMP-16-related propeptide or may be a propeptide from another protein of the TGF-&bgr; superfamily. Where the native BMP-16 propeptide is used, human BMP-16 may be produced by culturing a cell transformed with a DNA sequence comprising a DNA sequence encoding the full BMP-16, polypeptide, comprising nucleotide #1 to #840 as shown in SEQ ID NO: 1, producing a protein characterized by the amino acid sequence comprising amino acids #-170 to #110 as shown in SEQ ID NO:2, of which amino acids −170 to −1 comprise the native propeptide of human BMP-16, and recovering and purifying from the culture medium a protein characterized by the amino acid sequence comprising amino acids #1 to #110 as shown in SEQ ID NO:2, substantially free from other proteinaceous materials with which it is co-produced.
It is expected that other species, particularly human, have DNA sequences homologous to human BMP-16 protein. The invention, therefore, includes methods for obtaining the DNA sequences encoding human BMP-16 protein, the DNA sequences obtained by those methods, and the human protein encoded by those DNA sequences. This method entails utilizing the human BMP-16 protein nucleotide sequence or portions thereof to design probes to screen libraries for the corresponding gene from other species or coding sequences or fragments thereof from using standard techniques. Thus, the present invention may include DNA sequences from other species, which are homologous to human BMP-16 protein and can be obtained using the human BMP-16 sequence. The present invention may also include functional fragments of the human BMP-16 protein, and DNA sequences encoding such functional fragments, as well as functional fragments of other related proteins. The ability of such a fragment to function is determinable by assay of the protein in the biological assays described for the assay of the BMP-16 protein. A DNA sequence encoding the complete mature human BMP-16 protein (SEQ ID NO: 1) and the corresponding amino acid sequence (SEQ ID NO:2) are set forth herein. The BMP-16 proteins of the present invention, such as human BMP-16, may be produced by culturing a cell transformed with the correlating DNA sequence, such as the human BMP-16 DNA sequence, and recovering and purifying protein, such as BMP-16, from the culture medium. The purified expressed protein is substantially free from other proteinaceous materials with which it is co-produced, as well as from other contaminants. The recovered purified protein is contemplated to exhibit cartilage and/or bone and/or connective tissue formation activity. Thus, the proteins of the invention may be further characterized by the ability to demonstrate cartilage and/or bone and/or other connective tissue formation activity in the rat bone formation assay described below. BMP-16 proteins may be further characterized by the ability to demonstrated effects upon the growth and/or differentiation of embryonic cells and/or stem cells. Thus, the proteins or compositions of the present invention may also be characterized by their ability to enhance or enrich the growth and/or differentiation of the cells.
Another aspect of the invention provides pharmaceutical compositions containing a therapeutically effective amount of human BMP-16 protein, in a pharmaceutically acceptable vehicle or carrier. These compositions of the invention may be used in the formation of bone. These compositions may further be utilized for the formation of cartilage, or other connective tissue, including tendon, ligament, meniscus and other connective tissue, as well as combinations of the above, for example regeneration of the tendon-to-bone attachment apparatus. The compositions of the present invention such as compositions of human BMP-16, may also be used for wound healing and tissue repair. Compositions of the invention may further include at least one other therapeutically useful agent such as the BMP proteins BMP-1, BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 and BMP-7, disclosed for instance in U.S. Pat. Nos. 5,108,922; 5,013,649; 5,116,738; 5,106,748;:5,187,076; and 5,141,905; BMP-8, disclosed in PCT publication WO91/18098; and BMP-9, disclosed in PCT publication WO93/00432, BMP-10, disclosed in PCT application WO94/26893; BMP-11, disclose

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bone morphogenetic protein-16 (BMP-16)antibodies does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bone morphogenetic protein-16 (BMP-16)antibodies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bone morphogenetic protein-16 (BMP-16)antibodies will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3002701

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.