Compositions: coating or plastic – Coating or plastic compositions – Dental
Reexamination Certificate
2001-09-14
2003-04-08
Koslow, C. Melissa (Department: 1755)
Compositions: coating or plastic
Coating or plastic compositions
Dental
C623S026000, C523S116000, C523S115000, C424S423000
Reexamination Certificate
active
06544324
ABSTRACT:
BACKGROUND OF THE INVENTION
In joint surgery it is common practice today to anchor components of replacement joints by using as bone cement a two-component resin which polymerizes during the operation at normal temperatures and which, on account of its plastic properties leads to an interlocking of the prosthesis component in the bony sheath. Because of its physical properties, the bone cement shrinks onto the prosthesis resulting in a closed metal-tocement contact.
The bone cements commonly used are polymethylmethacrylate (PMMA) consisting of powdery bead polymers which are superficially dissolved by liquid monomers and embedded during the polymerization process. During mixing the polymer is immersed in the monomers. The PMMA beads are superficially dissolved and embedded in a composite manner. Despite their widespread use PMMA and related bone cements tend to represent the “weak link” in prosthesis fixation.
The long term success of a total joint prosthesis depends on the continued function and interaction of each of the components of the prosthetic system. In a cemented total hip prosthesis, for instance, stress transfer from the pelvis to the femur is a function of the materials between the two bones (e.g. bone-PMMA-metal-Ultra-high Molecular Weight Polyethylene-metal-PMMA-bone) and the interfaces between the materials. The weakest of the materials is the PMMA, with the lowest fracture toughness and ultimate strength.
The common mode of failure of total joint prostheses is aseptic loosening. X-ray Aexaminations of patients with loosened prostheses often reveal a radiolucent line in the bulk of the cement, indicating that the cement has fractured. Because the geometry of the prosthesis is complex, the state of stress is also highly complex, and the reasons for cement failure are not clear. For example, it has been postulated that the integrity of the metal stem/PMMA interface is the critical link in the performance of the prosthesis; however, the cause and effect relationship between the metal prosthesis/PMMA interface failure and cement fracture is not well understood although the fracture mechanics of the two phenomena are most likely linked. The improvement of the fracture characteristics of the bone cement, however, is a problem that has received some attention in recent years.
The composition of the PMMA used for total joint surgeries today is substantially the same as that used 20 years ago; very little has been done to improve the material itself. The acceptable success rate of cemented prostheses was achieved using existing cements, however, in a predominantly elderly patient population and with improved surgical handling techniques. The 90% success rate at ten years is good, but should be improved. Cement failures do occur, and generally lead to revision surgery. Furthermore, younger patients now receiving total joint replacements have a greater life expectancy than the design expectations of the total joint prosthesis. Improvement of the bone cement, exclusively, may not solve every problem associated with total joint replacements. But, by making improvements in each component of a total joint prosthesis, including the cement, the success rate of prostheses will improve, and mechanical failures can be virtually eliminated.
Increasing the longevity of PMMA by improving the resistance to failure of the polymer has received some, albeit surprisingly little, attention in the bioengineering literature in the past ten years. One suggested method of improvement was to formulate a new bone cement, based on n-butyl methacrylate, rather than the methyl methacrylate monomer. It has been reported that the material showed a higher ductility, a higher apparent fracture toughness, and a greater fatigue life. However, the actual fracture toughness determined by separate impact tests showed no improvement of the newn cement with respect to PMMA cements. An even more detrimental result was that the new polymer had only half the modulus and half the ultimate tensile strength of PMMA.
Another method of attempting to improve PMMA was the addition of a reinforcing phase, generally short fibers or whiskers. Early work was done by Knoell, et al.,
Ann. Biomed, Eng
., 3, 1975, pp. 225-229 with carbon fibers approximately 6 mm in length, 1, 2, 3 and 10% fiber content by weight (approximately 0.67, 1.33, 1.96 and 5.87% fiber content by volume, with measured increases of 100% in the average Young's modulus for the reinforced PMMA. They also reported a decrease in peak curing temperature of the reinforced PMMA. They found the reinforced cement viscous and difficult to mix, and they altered the ratio of powder polymer to liquid monomer to facilitate mixing of the reinforced cement. Pilliar, et al.,
J. Biomed. Mater. Res
., Vol. 10, 1976, pp. 893-906);
Fatigue of Filamentary Component Materials
ASTM STP 636, eds. Reifsnider, et al., ASTM 1977, pp. 206-227; used carbon fibers (6 mm length, 7 micrometers diameter) with a 2% volume content. They measured a 50% improvement in tension-tension fatigue limit, improved impact performance, and a 36% increase in ultimate tensile strength. However, it was implied that the reinforced PMMA had poor intrusion characteristics due to increased viscosity, and poor fiber distribution. Wright, et al.
J. Mater. Sci. Let
., 14 1979, pp. 503-505, did preliminary studies using PMMA reinforced with chopped aramid fibers. PMMA reinforced with 5.17% by volume (7% by weight) exhibited a 74% increase in fracture toughness over the plain PMMA. They were not able to produce reinforced PMMA with a fiber content greater than 5% by volume because of mixing and handling difficulties. Beaumont,
J. Mater. Sci
., 12, 1977, pp. 1845-1852 included glass beads in the PMMA mass and measured a 10
3
decrease in crack propagation velocity, using 30% volume content of the beads.
Very few investigations involved the use of metal fibers to reinforce PMMA. Taitsman and Saha,
J. Bone Joint Sizug
., Vol. 59-A, No. 3, Apr 1977, pp. 419-425, used large diameter (0.5 to 1.0 mm) stainless steel and vitallium wires as a reinforcing phase. They embedded 1, 2, or 3 wires in their PMMA specimens. They reported up to an 80% increase in tensile strength of the PMMA, with three embedded vitallium wires, but noted that clinical applications of their wire reinforced cement were limited. Taitsman and Saha's use of reinforcing wires is analogous to reinforcing bars embedded in structural concrete, and not a homogeneous, fiber composite material. Fishbane and Pond,
Clin. Orthop
., No. 128, 1977, pp. 194-199, reinforced industrial grade PMMA and PMMA bone cement with stainless steel whiskers (0.5-1.0 mm length and 65 micron diameter; 3-6 mm length and 90 microns diameter). They determined that the addition of fibers up to 6.5% by volume improved the compressive strength by nearly 100% for the industrial PMMA, but only 25% for the surgical grade PMMA. The compressive strength of PMMA is not a critical property for the longevity of the cement in vivo. These authors postulate that the reason for the decreased performance of the surgical PMMA was: “. . . due to the limitations imposed by the (surgical) methacrylate preparation technique.”
Schnur and Lee,
J. Biomed. Mater. Res
., Vol. 17, 1983, pp. 973-991, used titanium (Ti) sheet, wire, mesh and powder as a reinforcing phase with the purpose of increasing the modulus of PMMA to the modulus of cortical bone. A 16% volume fraction of 1 mm diameter wires (a total of 25 wires) increased the modulus of the PMMA by 380%, and the maximum compressive stress by 75%. The concept is again similar to the reinforcing bars embedded in concrete.
The more recent work in reinforcing PMMA bone cement as reported in the literature, has involved either carbon, graphite, or aramid fibers. Robinson, et al.,
J. Biomed. Mater. Res
., Vol. 15, 1981, pp. 203-205, tested both regular PMMA and low viscosity PMMA cement (available from Zimmer Co., Warsaw, Ind.) reinforced with 2% volume of carbon fibers (1.5 mm in length, 10 microns diameter). Both reinforced cements exh
Lyles Mark B.
Rathbun Kevin D.
Baker & Botts L.L.P.
Koslow C. Melissa
Materials Evolution and Development USA Inc.
LandOfFree
Bone cement compositions comprising fused fibrous compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bone cement compositions comprising fused fibrous compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bone cement compositions comprising fused fibrous compounds will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3080148