Dynamic magnetic information storage or retrieval – Head mounting – For adjusting head position
Reexamination Certificate
2001-06-04
2004-07-20
Heinz, A. J. (Department: 2653)
Dynamic magnetic information storage or retrieval
Head mounting
For adjusting head position
Reexamination Certificate
active
06765766
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a disc drive microactuator system and more particularly to an improved structure and fabrication method for precise placement of components in an electromagnetic microactuator.
The density of concentric data tracks on magnetic discs continues to increase (that is, the width of data tracks and radial spacing between data tracks are decreasing), requiring more precise radial positioning of the head. Conventionally, head positioning is accomplished by operating an actuator arm with a large-scale actuation motor, such as a voice coil motor, to radially position a slider (which carries the head) on a flexure at the end of the actuator arm. The large-scale motor lacks sufficient resolution to effectively accommodate high track-density discs. Thus, a high resolution head positioning mechanism, or microactuator, is necessary to accommodate the more densely spaced tracks.
One particular design for high resolution head positioning involves employing a high resolution microactuator in addition to the conventional lower resolution actuator motor, thereby effecting head positioning through dual stage actuation. Various microactuator designs have been considered to accomplish high resolution head positioning. In particular, magnetic microactuator designs featuring a magnet/keeper assembly and coil have been developed. Magnetic microactuators typically include a stator portion and a rotor portion, the stator being attached to the flexure and the rotor supporting the slider. The rotor is movable with respect to the stator such that the slider can be positioned more precisely over a track of a disc.
One challenge of current microactuator design is the positioning and placement of the slider when bonding it into the rotor. Presently, magnetic microactuators have very small tolerances in the relative location and separation distance between components. Current designs of magnetic microactuators have rotors with apertures for the placement of sliders into the microactuator. Apertures are also used for the placement of magnets into the microactuator. Use of apertures does not allow precise control of the separation distance between the magnet and the drive/sense coils, meaning that labor-intensive procedures must be employed during assembly to achieve the proper component spacing and positioning. Increasing the ease of positioning a slider or magnet into the microactuator by use of a positioning reference would decrease the costs of assembly. In particular, positioning references would provide a convenient and local method of properly placing and positioning a slider or magnet into the microactuator.
BRIEF SUMMARY OF THE INVENTION
The present invention is a microactuator for a disc drive. The microactuator finely positions a transducing head above a track on the disc. The transducing head is carried by a slider attached to the frame of the microactuator.
An exemplary embodiment of the microactuator utilizes a bonding tub to secure the slider to the microactuator frame. The bonding tub is formed with a tub cover. The top surface of the slider is engaged to a planar bonding surface on the bottom of the tub cover.
Another embodiment has a bonding tub to engage magnets used for a magnetic microactuator. The bonding tub for the magnets extends upwardly from the bottom of the microactuator frame and has a tub cover at the closed top end of the tub. The top surface of the magnets are engaged to a bonding surface on the bottom of the tub cover and the bottom surface of the magnets are secured to a bottom keeper.
REFERENCES:
patent: 3924268 (1975-12-01), McIntosh et al.
patent: 4374402 (1983-02-01), Blessom et al.
patent: 4651242 (1987-03-01), Hirano et al.
patent: 4764829 (1988-08-01), Makino
patent: 4914725 (1990-04-01), Belser et al.
patent: 5021906 (1991-06-01), Chang et al.
patent: 5034828 (1991-07-01), Ananth et al.
patent: 5177652 (1993-01-01), Yamaguchi et al.
patent: 5189578 (1993-02-01), Mori et al.
patent: 5303105 (1994-04-01), Jorgenson
patent: 5364742 (1994-11-01), Fan et al.
patent: 5375033 (1994-12-01), MacDonald
patent: 5521778 (1996-05-01), Boutaghou et al.
patent: 5657188 (1997-08-01), Jurgenson et al.
patent: 5745319 (1998-04-01), Takekado et al.
patent: 5764444 (1998-06-01), Imamura et al.
patent: 5781381 (1998-07-01), Koganezawa et al.
patent: 5796558 (1998-08-01), Hanrahan et al.
patent: 5801472 (1998-09-01), Wada et al.
patent: 5805375 (1998-09-01), Fan et al.
patent: 5856896 (1999-01-01), Berg et al.
patent: 5863024 (1999-01-01), Blind et al.
patent: 5867347 (1999-02-01), Knight et al.
patent: 5896246 (1999-04-01), Budde et al.
patent: 5898541 (1999-04-01), Boutaghou et al.
patent: 5898544 (1999-04-01), Krinke et al.
patent: 5920441 (1999-07-01), Cunningham et al.
patent: 5936805 (1999-08-01), Imaino
patent: 5945898 (1999-08-01), Judy et al.
patent: 5959808 (1999-09-01), Fan et al.
patent: 6043957 (2000-03-01), Hattori et al.
patent: 6064550 (2000-05-01), Koganezawa
patent: 6198606 (2001-03-01), Boutaghou et al.
patent: 6351354 (2002-02-01), Bonin
patent: 6362939 (2002-03-01), Crane et al.
patent: 6396667 (2002-05-01), Zhang et al.
patent: 6414822 (2002-07-01), Crane et al.
patent: 6414823 (2002-07-01), Crane et al.
patent: 6473274 (2002-10-01), Maimone et al.
patent: 6493192 (2002-12-01), Crane et al.
patent: 6501623 (2002-12-01), Sassolini et al.
patent: 6535360 (2003-03-01), Kim et al.
patent: 0 412 221 (1989-01-01), None
patent: 63-122069 (1988-05-01), None
patent: 02-263369 (1989-04-01), None
patent: 04-134681 (1992-05-01), None
patent: 04-368676 (1992-12-01), None
patent: 05-094682 (1993-04-01), None
patent: 06-020412 (1994-01-01), None
patent: 07-085621 (1995-03-01), None
“Silicon Micromachined Electromagnetic Microactuators for Rigid Disk Drives” by Tang et al,IEEE Transactions on Magnetics, vol. 31, No. 6, Nov. 1995.
“Magnetic Recording Head Positioning at Very High Track Densities Using a Microactuator-Based, Two-Stage Servo System” by Fan et al.,IEEE Transactions on Industrial Electronics, vol. 42, No. 3, Jun. 1995.
“A Flexural Piggyback Milli-Actuator for Over 5 Gbit/in2Density Magnetic Recording” by Koganezawa et al,IEEE Transactions on Magnetics, vol. 32, No. 5, Sep. 1996.
“Transverse Mode Electrostatic Microactuator for MEMS-Based HDD Slider” by Imamura et al,IEEE1996.
“An Experiment for Head Positioning System Using Submicron Track-width GMR Head” by Yoshikawa et al.,IEEE Transactions on Magnetics, vol. 32, No. 5, Sep. 1996.
“Micro Electrostatic Actuators in Dual-Stage Disk Drives with High Track Density” by Tang et al.,IEEE Transactions on Magnetics, vol. 32, No. 5, Sep. 1996.
“Piezoelectric Microactuator Compensating for Off-Track Errors in Magnetic Disk Drives” by Imamura et al,Advance Information Storage Systems, vol. 5, pp 119-126.
“A Dual-Stage Magnetic Disk Drive Actuator Using a Piezoelectric Device for a High Track Density” Mori et al.,IEEE Transactions on Magnetics, vol. 27, No. 6, Nov. 1991.
“Dynamic Loading Criteria for 3-1/2 Inch HDD Using Multilayer Piezoelectric Load/Unload Mechanism” by Kajitani et al.,IEEE Transactions on Magnetics, vol. 27, No. 6, Nov. 1991.
“Design, Fabrication, and Testing of Silicon Microgimbals for Super-Compact Rigid Disk Drives” by Temesvary et al.,Journal of Microelectromechanical Systems, vol. 4, No. 1, Mar. 1995.
Bonin Wayne Allen
Boutaghou Zine-Eddine
Crane Peter
Hipwell, Jr. Roger Lee
Polson Bruce Charlton
Castro Angel
Heinz A. J.
Kinney & Lange , P.A.
Seagate Technology LLC
LandOfFree
Bonding tub improved electromagnetic microactuator in disc... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bonding tub improved electromagnetic microactuator in disc..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bonding tub improved electromagnetic microactuator in disc... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3225046