Bolt assembly for a firearm

Firearms – Breech loading – Sliding breechblock

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C089S185000

Reexamination Certificate

active

06182389

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to firearm bolt assemblies, and more particularly to the improved design of a bolt and extractor for use therewith.
BACKGROUND OF THE INVENTION
The use of automatic and semi-automatic rifles is commonly known to be prevalent in the military. The standard automatic weapon for the U. S. Military is the M- 16 automatic rifle. The M-16 rifle or other weapons related thereto, such as the Stoner 63 or AR10, for example, are also commonly used by militaries of other countries and in the civilian sector. The structure and mechanisms of these weapons, and improvements and variations thereto, have been the subject of many patents over the years.
Generally, the M-16 family of automatic and semi-automatic rifles is based on a gas-operated bolt carrier system. The bolt carrier system includes a multi-lug bolt that interlocks with a barrel extension engaged to the rifle barrel for firing each round of ammunition. The bolt also includes a spring-loaded extractor configured to releasably engage a cartridge as it is placed in the firing chamber. When the rifle is fired, the interlocked bolt receives the recoil force that is transmitted from the face of the bolt to its lugs. The lugs in turn transmit the recoil force to corresponding lugs of the barrel extension. Once the round is fired, the bolt unlocks from the barrel extension and the bolt carrier recoils. As it recoils, the extractor pulls the expended cartridge from the firing chamber. The cartridge is then ejected, as is well known in the art, to allow chambering of another round by the bolt assembly. This process may then be repeated as often as desired by the shooter until the last cartridge is expended.
The design of the bolt carrier and bolts used in such weapons has been the subject of previous patents. For example, U.S. Pat. No. 4,398,448 to LaFever discloses a new design for a bolt carrier which buffers the bolt and bolt carrier upon recoil. The buffer simultaneously stops the rearward motion of the bolt and bolt carrier, thus reducing loading on the cam pins and the latch.
U.S. Pat. No. 5,351,598 to Schuetz also discloses a new type of bolt for an automatic weapon. A portion of some of the lugs on the front face of the bolt have been removed to allow easier chambering of short, low pressure pistol cartridges in an M-16 rifle.
While the prior art has addressed some of the deficiencies in the design of bolts and bolt carriers of automatic and semi-automatic rifles, there still exists many problems in the use of such assemblies. It is well known that the bolts are subject to failure due to the extreme stresses and temperatures to which they are subjected. This problem is particularly focused with respect to the lugs projecting from the main body of the bolt. As described above, the lugs are used to transfer the force from the firing of the cartridge to the barrel of the rifle. This problem is exacerbated further by the fact that automatic and semi-automatic rifles employ an unsymmetrical locking system in order to accommodate the extractor. The lack of symmetry of the load bearing portion of the bolt results in an uneven stress distribution among the lugs. Thus, the lugs of bolts for rifles are subject to structural failure due to the repeated high stresses induced by firing the rifle. This situation creates safety and reliability problems for the user of the rifle.
Another problem known in the art involves the extractor that is typically coupled to a bolt of an automatic or semi-automatic rifle. The extractor is known to malfunction, thus causing a jamming of the rifle due to the spent cartridge remaining in the firing chamber. As previously described, the extractor is typically spring-loaded. In the prior art extractors, the spring has a relatively short length due to the small amount of space between the outer surface of the bolt and the firing pin bore defined by the bolt for receiving the firing pin. The short length of the spring makes it much more difficult to control and maintain the tension to ensure it remains at the proper setting.
While the prior art devices attempt to address some of the problems with bolts and bolt carriers for rifles, there are still problems existing in the art requiring a need for a bolt that effectively addresses those problems. The present invention is directed toward providing various improvements to bolt carriers and bolts for automatic and semi-automatic rifles, and addresses the problems and the shortcomings of the prior art in a novel and unobvious way.
SUMMARY OF THE INVENTION
The present invention addresses the foregoing shortcomings in the design of bolt carriers and bolts for automatic and semi-automatic rifles. In accordance with one aspect of the present invention, a bolt for a firearm includes an elongated body having a proximal end and an opposite distal end along a longitudinal axis. The body defines an intermediate portion having an outer surface. A number of bolt lugs are integrally connected to the outer surface of the intermediate portion and extend radially from the body about the longitudinal axis. Each of the bolt lugs has an end face adjacent the distal end of the body and an opposite bearing face. Each lug also has a pair of sidewalls extending between the end face and the bearing face. At least one of the bolt lugs defines a fillet at the intersection of the sidewall and the outer surface of the cylindrical body.
In accordance with another aspect of the present invention, the bolt includes an elongate body having a proximal end and an opposite distal end along a longitudinal axis. The body defines a generally cylindrical body portion having an outer surface and a firing pin bore extending between the proximal and distal ends. The body further includes a number of bolt lugs positioned adjacent the distal end integrally connected to the body. The bolt lugs radially extend from the body about the longitudinal axis. The bolt lugs include at least a first bolt lug and an adjacent second bolt lug. A recess is formed in the body, and the body defines a pair of spring wells oppositely disposed about the firing pin bore in the recess. A spring is disposed within each of the spring wells, and an extractor is configured to reside in the recess and be pivotably coupled to the body. The extractor includes a first portion extending between the first and second bolt lugs, and an extractor body extending to a second portion. The second portion of the extractor body has a pair of flanges extending therefrom. Each of the flanges engages a corresponding one of the springs to bias the extractor to a first position to releasably engage a cartridge.
In yet another aspect of the present invention, an extractor for a bolt of a firearm is provided. The bolt includes an elongate body having a proximal end and an opposite distal end along a longitudinal axis. The body defines a generally cylindrical portion and a firing pin bore along the longitudinal axis between the proximal and distal ends. The body further includes a number of bolt lugs adjacent to the distal end integrally connected to and radially extending from the body about the longitudinal axis. The bolt lugs include at least a first bolt lug and an adjacent second bolt lug. The body further defines a recess extending between the first and second bolt lugs and a pair of spring wells oppositely disposed about the firing pin bore in communication with the recess. A spring is disposed within each of the spring wells. The extractor includes a first portion extending between the first and second bolt lugs, a pair of flanges extending from a second portion, and a body extending between the first portion and the second portion. A pin pivotably couples the extractor to the body such that each of the flanges engages a corresponding one of the springs. The springs bias the extractor to a first position for releasably engaging a cartridge.
In another aspect of the present invention, a bolt carrier for a firearm is provided. The bolt carrier comprises a bolt defining a firing pin bore therethrough an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bolt assembly for a firearm does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bolt assembly for a firearm, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bolt assembly for a firearm will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2592541

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.