Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives
Reexamination Certificate
1998-11-09
2001-03-27
Romeo, David (Department: 1646)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carbohydrates or derivatives
C530S350000
Reexamination Certificate
active
06207813
ABSTRACT:
The present invention relates to a family of purified proteins, termed BMP-6 proteins (wherein BMP is bone morphogenic protein), which exhibit the ability to induce cartilage and/or bone formation and processes for obtaining them. These proteins may be used to induce bone and/or cartilage formation and in wound healing and tissue repair.
The invention provides purified human BMP-6 proteins, substantially free from other proteins with which they are co-produced. The BMP-6 proteins of the invention are characterized by an amino acid sequence comprising acid #412 to amino acid #513 set forth in Table III. The amino acid sequence from amino acid #412 to #513 is encoded by the DNA sequence of Table III from nucleotide #1393 to nucleotide #1698. These proteins may be further characterized by an apparent molecular weight of 28,000-30,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Under reducing conditions in SDS-PAGE the protein electrophoreses with a molecular weight of approximately 14,000-20,000 daltons. It is contemplated that these proteins are capable of stimulating promoting, or otherwise inducing cartilage and/or bone formation.
The invention, further provides bovine BMP-6 proteins characterized by the amino acid sequence comprising amino acid #121 to amino acid #222 set forth in Table II. The amino acid sequence from #121 to #222 is encoded by the DNA sequence of Table II from nucleotide #361 to #666 of Table II. These proteins may be further characterized by an apparent molecular weight of 28,000-30,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Under reducing conditions in SDS-PAGE the protein electrophoreses with a molecular weight of approximately 14,000-20,000 daltons. It is contemplated that these proteins are capable of inducing cartilage and/or bone formation.
Human BMP-6 proteins of the invention are produced by culturing a cell transformed with a DNA sequence comprising nucleotide #1393 to nucleotide #1698 as shown in Table III or a substantially similar sequence, recovering and purifying from the culture medium a protein comprising amino acid #412 to amino acid #513 or a substantially similar sequence.
Bovine proteins of the invention may be produced by culturing a cell transformed with a DNA comprising nucleotide #361 through nucleotide #666 as set forth in Table II or a substantially similar sequence and recovering and purifying from the culture medium a protein comprising amino acid #121 to amino acid #222 as set forth in Table II.
The invention further provides a method wherein the proteins described above are utilized for obtaining related human protein/s or other mammalian cartilage and/or bone formation protein/s. Such methods are known to those skilled in the art of genetic engineering. One method for obtaining such proteins involves utilizing the human BMP-6 coding sequence or a portion thereof from nucleotide #160-#698to design probes for screening human genomic and/or cDNA libraries to isolate human genomic and/or cDNA sequences. Additional methods within the art may employ the bovine and human BMP-6 proteins of the invention to obtain other mammalian BMP-6 cartilage and/or bone formation proteins. Having identified the nucleotide sequences, the proteins are produced by culturing a cell transformed with the nucleotide sequence. This sequence or portions thereof hybridizes under stringent conditions to the nucleotide sequence substantially as shown in Table II comprising nucleotide #1 to nucleotide #666 or the nucleotide sequence or portions thereof substantially as shown in Table III comprising nucleotide #160 to #1698 and encodes a protein exhibiting cartilage and/or bone formation activity. The expressed protein is recovered and purified from the culture medium. The purified BMP-6 proteins of the invention are substantially free from other proteinaceous materials with which they are co-produced, as well as from other contaminants.
The BMP-6 proteins of the invention are further characterized by the ability to promote, stimulate or otherwise induce the formation of cartilage and/or bone. It is further contemplated that the ability of these proteins to induce the formation of cartilage and/or bone is exhibited by the ability to demonstrate cartilage and/or bone formation activity in the rat bone formation assay described below. It is further contemplated that the proteins of the invention demonstrate activity in this rat bone formation assay at a concentration of 10 &mgr;g-500 &mgr;g/gram of bone formed. More particularly, it is contemplated these proteins may be characterized by the ability of log of the protein to score at least +2 in the rat bone formation assay described below using either the original or modified scoring method.
Another aspect of the invention provides pharmaceutical compositions containing a therapeutically effective amount of a protein of the invention in a pharmaceutically acceptable vehicle or carrier. These compositions of the invention may be used to induce bone and/ or cartilage formation. These compositions may also be used for wound healing and tissue repair. Further compositions of the invention may include, in addition to a BMP-6 protein, at least one other therapeutically useful agent such as the proteins designated BMP-1, BMP-2A and -2B, BMP-3, BMP-5, and BMP-7 disclosed respectively in co-owned U.S. patent application Ser. No. 179,101, Ser. No. 179,100, and Ser. No. 179,197, Ser. No. 437,409, Ser. No. 438,919. Other therapeutically useful agents include growth factors such as epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factors (TGF-&agr; and TGF-&bgr;) and platelet derived growth factor (PDGF). The compositions of the invention may also include an appropriate matrix, for instance, for delivery and support of the composition and/or providing a surface for bone and/or cartilage growth.
The compositions may be employed in methods for treating a number of bone and/or cartilage defects, and periodontal disease. They may also be employed in methods for treating various types of wounds and in tissue repair. These methods, according to the invention, entail administering to a patient needing such bone and/or cartilage formation, wound healing or tissue repair, a therapeutically effective amount of a BMP-6 protein of the invention in a pharmaceutically acceptable vehicle or carrier including a martrix. These methods may also entail the administration of a BMP-6 protein in conjunction with at least one of the “BMP” proteins disclosed in the co-owned applications described above. In addition, these methods may also include the administration of a protein of the invention with other growth factors including EGF, FGF, TGF-&agr;, TGF-&bgr;, and PDFG.
Still a further aspect of the invention are DNA sequences coding for expression of a protein of the invention. Such sequences include the sequence of nucleotides in a 5′ to 3′ direction illustrated in Table II or Table III or DNA sequences which hybridize under stringent conditions with the DNA sequence of Table II or Table III and encode a protein demonstrating ability to induce cartilage and/or bone formation. Such ability to induce cartilage and/or bone formation may be demonstrated in the rat bone formation assay described below. It is contemplated that these proteins demonstrate activity in this assay at a concentration of 10 &mgr;g-500 &mgr;g/gram of bone formed. More particularly, it is contemplated that these proteins demonstrate the ability of 1 &mgr;g of the protein to score at least +2 in the rat bone formation assay using either the original or modified scoring method. Allelic or variations as described herein below of the sequences of Table II and III, whether such nucleotide changes result in changes in the peptide sequence or not, are also included in the present invention.
A further aspect of the inventio
Celeste Anthony J.
Rosen Vicki A.
Wang Elizabeth A.
Wozney John M.
Genetics Institute Inc.
Kapinos Ellen J.
Romeo David
LandOfFree
BMP-6 proteins does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with BMP-6 proteins, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and BMP-6 proteins will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2454701