Electrical computers and digital processing systems: multicomput – Miscellaneous
Reexamination Certificate
2000-06-21
2004-11-30
Jean, Frantz B. (Department: 2121)
Electrical computers and digital processing systems: multicomput
Miscellaneous
C709S223000, C709S224000, C370S249000
Reexamination Certificate
active
06826590
ABSTRACT:
TECHNICAL FIELD
The present invention relates to control system architecture. More particularly, the present invention relates to an open, interoperable distributed control system in a high performance network environment.
BACKGROUND OF THE INVENTION
Automatic control systems are critical to all sectors of industry such as process control, discrete control, batch control (process and discrete combined), machine tool control, motion control, and robotics. One of the strongest needs in modern control systems is development and use of “open” and “interoperable” systems. Open, interoperable systems allow control devices made by different manufacturers to communicate and work together in the same system without the need for custom programming. “Fieldbus” is the common term used to describe these types of control systems.
The movement toward open, interoperable fieldbus systems is driven by device manufacturers and end users. Manufacturers want open, interoperable systems because it allows them to sell their products to more end users while reducing development costs. End users want open, interoperable systems so that they can select the best control devices for their system regardless of the device manufacturer.
There has also been a trend toward distribution of control functions into intelligent devices. In centralized control systems, a central controller performs all the control functions.
In distributed control systems, more than one control device operating in the system takes an active role in the control functions. Although both centralized and decentralized systems use a communication network, decentralized systems reduce overall system costs by reducing or eliminating the centralized controller functions between the control devices and the human-machine interface.
In order for distributed control systems to be truly open and interoperable, both the communications system and the user layer (above the communication system layers) must be specified and made open. One of the truly open and interoperable distributed systems is the fieldbus system provided by the Fieldbus Foundation. The FOUNDATION™ fieldbus user layer is described, e.g., in U.S. patent application Ser. No. 08/916,178 (hereafter the “178” application) filed Aug. 21, 1997,entitled “BLOCK-ORIENTED CONTROL SYSTEM”, and assigned to the assignee of the present application.
The lower speed 31.25 kilobits per second fieldbus (H1) used by the FOUNDATION™ fieldbus is described in part by International Electrotechnical Committee (IEC) Standard IEC 61158, the entirety of which is hereby incorporated by reference herein.
While the FOUNDATION™ fieldbus provides the open and interoperable solution for the H
1
control capability, there is a great need to provide an open and interoperable solution for distributed control on a very high performance communication system typically called a fieldbus “backbone” network. The backbone network aggregates information from the lower speed control devices, e.g., the H
1
and other control devices, which is used in supervisory and advanced control applications. The backbone is also needed for integration of control information into the enterprise's Management Information Systems (MIS).
One of the widely accepted standards for high performance communications signaling is Ethernet. Invented by Xerox in the 1970's, Ethernet has progressed from an initial speed of 10 Megabits per second, to 100 Megabits per second, to 1 Gigabit per second and beyond. Ethernet signaling is specified in an Institute of Electrical and Electronics Engineers (IEEE) standard (IEEE 802.3). Ethernet signaling is the underlying technology used by the Internet. The Internet protocols are specified by the Internet Engineering Task Force (IETF) and are issued as Request For Comment (RFC) specifications.
Although Ethernet/Internet technology provides the basic services for a high performance fieldbus backbone, it does not provide for all of the functions needed for use in distributed control systems. In particular, IEEE and IETF do not have suitable open and interoperable solutions for integration of distributed control systems (e.g., the H
1
subsystem), system time synchronization, and fault tolerance.
The method of transferring information from lower speed fieldbuses to the Ethernet used by organizations such as Open DeviceNet™ Vendor Association, Inc., (“EtherNet/IP,”) and PROFIBUS International, (“PROFINet”) are not suitable for use in the high performance environment because they encapsulate the lower speed protocol packets in an Ethernet frame. This method, known as “tunneling,” is common in centralized control systems, but is inadequate for high performance distributed control systems. Although simpler to specify, tunneling would require too many Transport Control Protocol (TCP) connections with the resulting interrupt processing and memory overhead on the devices connected to the fieldbus backbone. In addition tunneling wastes much of the Ethernet bandwidth because the lower speed protocol packets (e.g., the H
1
packets) are small and in many cases the Ethernet packet overhead would be bigger than a lower speed protocol packet.
Devices connected to the Ethernet must have a common sense of system time for time stamp and function block scheduling (control) purposes. For high performance distributed control, system time often needs to be accurate to within less than 1 millisecond. Heretofore, there is no known solution that provides this accuracy using the Commercial Off The Shelf (COTS) Ethernet equipment.
Fault tolerance of the Ethernet communication media and devices connected to the Ethernet is required for high performance distributed control applications. There is no known solution that provides the required fault tolerance using standard COTS Ethernet equipment. All of the prior attempts in providing the required fault tolerance require special Ethernet/Internet electronic hardware and/or software, and/or a non-standard “redundancy manager” device to be added to the Ethernet.
Thus, what is needed is an open, interoperable solution optimized for integration of distributed control systems and other control devices in a high performance fieldbus backbone.
What is also needed is an open, interoperable solution that provides system time synchronization suitable for distributed control applications operable over a high performance fieldbus backbone.
What is also needed is an open, interoperable solution that provides a fault tolerant high performance fieldbus backbone as well as fault tolerant devices that are connected to the fieldbus backbone.
SUMMARY OF THE INVENTION
The present invention overcomes the shortcomings described above and provides a new and improved distributed control system, which operates on a high performance backbone, e.g., the standard COTS Ethernet and Internet technology. The embodiments of the present invention are collectively referred to herein as the “High Speed Ethernet” (HSE). HSE includes the features of the distributed control system described by the '178 application and FOUNDATION™ fieldbus specifications (which are listed in Appendix A as the Reference Set 1), and further includes three new protocols described in the supporting specifications thereof, which are listed in Appendix A as the Reference Set 2. In particular, the new protocols are referred to herein as: the HSE Field Device Access (FDA) Agent, the HSE System Management Kernel (SMK), and the HSE Local Area Network Redundancy Entity (LRE).
The HSE FDA Agent allows System Management (SM) and Fieldbus Message Specification (FMS) services used by the H
1
devices to be conveyed over the Ethernet using standard Internet User Data Protocol (UDP) and Transport Control Protocol (TCP). This allows HSE Devices on the Ethernet to communicate to H
1
devices that are connected via a “HSE Linking Device.” The HSE FDA Agent is also used by the local Function Block Application Process (FBAP) in a HSE Device or HSE Linking Device. Thus, the HSE FDA Agent enables remote applications to access HSE Devices and/or H
1
devic
Brodman Steven K.
Corles Colin R.
Glanzer David A.
Hawkins William M.
Hirst Michael D.
Dorsey & Whitney LLP
Fieldbus Foundation
Jean Frantz B.
LandOfFree
Block-oriented control system on high speed ethernet does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Block-oriented control system on high speed ethernet, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Block-oriented control system on high speed ethernet will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3340025