Block deformation removing filter, image processing...

Image analysis – Image enhancement or restoration – Edge or contour enhancement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S420100, C348S606000, C348S618000, C382S264000, C382S269000

Reexamination Certificate

active

06496605

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a block deformation removing filter, an image processing apparatus using the filter and a method of filtering image signals. Particularly, the present invention relates to a block deformation (or blocking noise) removing filter which is used to remove a block deformation (or blocking noise) taking place when for example an image is encoded by compression and the encoded image signal is decoded, and an image processing apparatus using the block deformation removing filter.
When an image is encoded by compression with high efficiency by way of an image compression coding technique, it may often present an image degradation associated with various compression coding techniques. For example, when an image is encoded by compression in units of block by way of the discrete cosine transformation (DCT), the block boundaries may become discontinuous to each another, thus resulting in block deformation.
The possible block deformation is most outstanding image quality degradation in a visual sense when a compression coding technique is applied in units of block, so that the improvement of the image quality requires minimization or removal of such deformation or discontinuity. So far in order to solve this problem, a block deformation removing filter is used to remove block deformation by applying filtering processing on block boundaries.
FIGS. 1A and 1B
are illustrations showing how to remove the block deformation by way of a low-pass filter.
FIG. 1A
shows intensity values of decoded image before filtering, while
FIG. 1B
after filtering. In this connection,
FIGS. 1A and 1B
respectively show four scanning lines as representation which cross a block boundary in the image at right angle, and the heights of respective lines show intensity levels or values (shown by solid circles) of pixels lined up on each line.
FIG. 1A
shows differentials A in intensity level taking place on every line crossing at right angle with the block boundary shown by a dotted line, where the differentials may be slightly different but essentially same, which cause a discontinuous block boundary resulting in a block deformation. Such a block deformation contributes to assume a mosaic pattern of a decoded image in those points, thus causing a significant visual difficulty.
Therefore, as shown in
FIG. 1B
, possible differentials &Dgr; in the intensity level at the block boundary are smoothed by way of low-pass filter, thereby taking the straight edge off in intensity value, resulting in a minimized block deformation.
Block deformation may occur not only on block boundaries but also on other positions, for example, when motion compensation is carried out in moving picture coding.
However, a conventional block deformation removing filter can remove block deformation only on the block boundaries. And, hence, no complete removal of block deformation is achieved.
SUMMARY OF THE INVENTION
A purpose. of the present invention is to provide a block deformation removing filter, an image signal processing apparatus with the block deformation removing filter, a method of filtering an image signal, and a storage medium for storing software therefor, to remove block deformation that occurs not only a block boundary but also outside the boundary of an image signal.
The present invention provides a block deformation removing filter comprising: a detector responsive to pixel signals included in a plurality of pixel blocks forming an image to detect a plurality of differentials each between at least two pixel signal levels on block boundaries between the pixel blocks and in the vicinity of the block boundaries; a comparator to compare the differentials with each other to obtain the maximum differential absolute value; a determiner to compare the maximum differential absolute value with a reference value to determine whether block deformation occurs in a pixel signal in the vicinity of a position on the pixel blocks where the maximum differential absolute value is obtained; and a processor to remove the block deformation when it is determined that the block deformation occurs in the pixel signal in the vicinity of the position on the pixel blocks where the maximum differential absolute value is obtained.
Furthermore, the present invention provides an image processing apparatus comprising: a decoder to decode pixel signals included in a plurality of pixel blocks forming an encoded image; a detector responsive to the decoded pixel signals to detect a plurality of differentials each between at least two pixel signal levels on block boundaries between the pixel blocks and in the vicinity of the block boundaries; a comparator to compare the differentials with each other to obtain the maximum differential absolute value; a determiner to compare the maximum differential absolute value with a reference value to determine whether block deformation occurs in a pixel signal in the vicinity of a position on the pixel blocks where the maximum differential absolute value is obtained; and a processor to remove the block deformation when it is determined that the block deformation occurs in the pixel signal in the vicinity of the position on the pixel blocks where the maximum differential absolute value is obtained.
Furthermore, the present invention provides an image processing apparatus comprising: an encoder to encode predictive error signals for pixel signals included in a plurality of pixel blocks forming an encoded image; a decoder to decode the encoded predictive error signals; a detector responsive to the decoded predictive error signals to detect a plurality of differentials each between at least two pixel signal levels on block boundaries between the pixel blocks and in the vicinity of the block boundaries; a comparator to compare the differentials with each other to obtain the maximum differential absolute value; a determiner to compare the maximum differential absolute value with a reference value to determine whether block deformation occurs in a pixel signal in the vicinity of a position on the pixel blocks where the maximum differential absolute value is obtained; a processor to remove the block deformation when it is determined that the block deformation occurs in the pixel signal in the vicinity of the position on the pixel blocks where the maximum differential absolute value is obtained; a predictor to generate predictive signals based on output signals of the processor; and a generator to generate the predictive error signals by subtracting the predictive signals from the pixel signals.
Furthermore, the present invention provides an image processing apparatus comprising: a decoder to decode pixel signals included in a plurality of pixel blocks forming an encoded image; an adder to add the decoded pixel signals and predictive signals; a detector responsive to output signals of the adder to detect a plurality of differentials each between at least two pixel signal levels on block boundaries between the pixel blocks and in the vicinity of the block boundaries; a comparator to compare the differentials with each other to obtain the maximum differential absolute value; a determiner to compare the maximum differential absolute value with a reference value to determine whether block deformation occurs in a pixel signal in the vicinity of a position on the pixel blocks where the maximum differential absolute value is obtained; a processor to remove the block deformation when it is determined that the block deformation occurs in the pixel signal in the vicinity of the position on the pixel blocks where the maximum differential absolute value is obtained; and a predictor to generate the predictive signals based on output signals of the processor.
Furthermore, the present invention provides a method of filtering image signals comprising the steps of: detecting, in response to pixel signals included in a plurality of pixel blocks forming an image, a plurality of differentials each between at least two pixel signal levels on block boundaries between the pixel blocks and in the vicinit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Block deformation removing filter, image processing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Block deformation removing filter, image processing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Block deformation removing filter, image processing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2973520

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.