Special receptacle or package – For ampule – capsule – pellet – or granule – Structure for 'press-out' of content unit
Reexamination Certificate
2002-06-03
2004-03-16
Bui, Luan K. (Department: 3728)
Special receptacle or package
For ampule, capsule, pellet, or granule
Structure for 'press-out' of content unit
C206S539000
Reexamination Certificate
active
06705467
ABSTRACT:
This is a 371 of International Application No. PCT/EP00/04320, filed on May 13, 2000, that has benefit of European Patent Application No. 99810479.8, filed on Jun. 2, 1999.
The present invention relates to a push-through pack, containing a base part comprising at least one surface element and at least one recess, a push-through cover film affixed to the base part and covering at least the recess opening of the recess, and a cover layer which overlays the cover film on the outside, and the cover layer contains non-push-through and push-through sections, and the recess is located at least partially over a non-push-through section in the cover layer when the push-through pack is undisturbed, and means are arranged to expose the content by way of which means the recess opening can be brought over a push-through section in the cover layer by movement relative to the cover layer so that the content can be pushed through the cover film and the push-through section in the cover layer. The invention further relates to the use of a push-through pack.
The closure of base parts, also known as product carriers, of push-through packs or blister packs, using push-through cover films, made, for example, of metal such as aluminum, is familiar. The cover film may be an aluminum foil coated with a sealing layer, such as a sealing lacquer. The aluminum foil is sealed over the sealing layer onto the base part, for example, by heat-sealing.
To remove the contents, these are pushed against the cover film by deforming the recess, causing the cover film to tear or burst, thereby releasing the content or filling. This means that the cover film must be inelastic and easily tearable. Thus, aluminum foils modified with a sealing layer are especially suitable for this purpose. The packs described contain, for example, medicaments such as pills, tablets, dragees, ampoules and the like.
The contents, in particular medicaments, in their habitually colorful forms of administration that resemble sweets, arouse the curiosity of children. In order to prevent children from gaining access to special medicaments, it is often appropriate to make their opening manipulation difficult. Said cover films have the disadvantage that the intended ease with which they may be pushed through constitutes a not insurmountable obstacle, even for-children, to the removal of the contents from the packaging.
A child-safe pharmaceutical packaging comprising a base foil, a push-through foil and a safety foil is known from DE-A-29 19 713. The contents cannot be removed from the pack by pushing it through without first completely removing the safety foil, for example by peeling it off, which can however be difficult even for adults, in particular elderly persons.
U.S. Pat. No. 5,150,793 describes a child-safe packing of a base part with several recesses, where the recesses are covered with a push-through film. On the push-through film is provided a further cover film with openings. In the edge area of the packing is arranged a housing in which are arranged spring means to move the base part relative to the cover film. In the undisturbed position, the recesses lie over non-push-through sections of the cover film. To remove the contents, the base part or recesses can be moved over the openings in the cover film by a sliding force against the spring pressure.
The present invention seeks to create a push-through pack which cannot be opened by children, but which is nevertheless easy for elderly persons to use and to open.
The problem is solved by the invention in that a cover layer is connected at two opposing side edges or side edge areas of the surface element to the base part and contains fold lines at which the cover layer can be shifted and folded up in the manner of a parallelogram by a movement relative to the surface element, so that when folded up the recess opening comes to lie on a push-through section in the cover layer.
The term push-through is preferably understood as manually push-through.
The push-through pack according to the invention suitably contains a base part with at least one or a multiplicity of for example cornered, round or oval recesses, also known as compartments or cups. The base part may for example be rectangular when viewed from above, with the recesses preferably being evenly distributed and arranged in lines and rows.
In a preferred embodiment, the push-through pack has weakening lines, preferably perforations, preferably running crosswise and lengthwise, which enclose or delimit sections, for example rectangular surface elements with at least one, and preferably precisely one, recess. Individual such sections can be manually separated from such a pack as single or multiple portions, preferably along the weakening lines.
Weakening lines are target separation lines or target separation areas along which the material can be separated, preferably manually. The weakening lines are produced for example using mechanical means, such as cutting, stamping or scratching with knives, using physical means such as for example heat treatment, laser beaming, electron beaming, electrical discharge machining, dissolution, or swelling using solvents or through chemical reaction, e.g. by etching. The weakening lines can accordingly be areas in a foil which are completely or partially separated or are weakened through a change in the structure of the material and through abrasion of the material.
The surface elements are preferably rectangular or preferably have a geometry similar to the rectangular shape.
In a preferred embodiment, the push-through pack contains two lines of recesses, so that at least one edge of each surface element containing a recess forms a section of the edge of the push-through pack.
The base parts of this blister pack can be embossed, cast, deep- or stretch-drawn or vacuum-molded base parts made of metal such as aluminum, plastic, plastic/paper composites or plastic/metal composites. The plastics may be plastics coated with inorganic layers, in particular with SiO
x
.
Suitable plastics for base parts are, for example, thermoplastics containing foils and foil composites on an olefin basis, such as polyethylene, polypropylene or copolymers thereof, on an ester basis, such as polyethylene terephthalates, polyamides or halogen-containing plastics such as polyvinyl chloride or polyvinylidene chloride or mixtures thereof. The base parts may also have a barrier layer against gases and vapors. Such a barrier layer may be, for example, a metal foil, such as an aluminum foil or a ceramic or metal layer arranged between two plastic layers, embedded in a plastic composite. Ceramic or metal layers may be, for example, produced by vaporizing metals, oxides or nitrides of aluminum, silicon and other metals and metalloids in a vacuum, and depositing the materials on a plastic carrier.
The base part may also be manufactured from or using materials containing cellulose, such as paper, cardboard, molding materials containing paper, or be reinforced with the aid of such materials.
In a preferred embodiment, the base part consists of or contains polyvinylchloride (PVC), PVC coated with polyvinylidene chloride (PVdC), cyclo-olefin copolymer (COC) or polychloro-trifluoroethylene (PCTFE). Composite foils with PCTFE, in particular with PCTFE and PVC, are also preferred. The total thickness of the base part is for example 100-500 mm, in particular 200-360 mm.
Further preferred foil composites for base parts contain or consist of an external foil made of PVC of a thickness of 60-100 mm, a further external foil made of oriented polyamide (oPA) of a thickness of 25-30 mm and an intermediate foil made of aluminum of a thickness of 4560 mm. In addition, foil composites, each with an external foil made of polypropylene and an intermediate foil made of aluminum, may be used.
The cover film is push-through over the recess opening. It preferably comprises an aluminum foil, in particular, an aluminum foil modified with a sealing layer. An aluminum foil of a thickness of 15-30 mm, preferably 18-22 mm, coated with a hot-seal lacquer, is p
Kancsar Peter
Krohn Michael
Marti Susanne
Schmauder Claudia
Zellweger Laurenz
Alcan Technology & Management Ltd.
Bui Luan K.
Fisher Christen & Sabol
LandOfFree
Blister package does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Blister package, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Blister package will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3270199