Blended fluorosilicone release agent for silicone fuser members

Stock material or miscellaneous articles – Composite – Of silicon containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C399S320000, C399S324000

Reexamination Certificate

active

06808815

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to fuser members useful in electrostatographic reproducing apparatuses, including digital, image on image, and contact electrostatic printing apparatuses. The present fuser members can be used as fuser members, pressure members, transfuse or transfix members, and the like. In an embodiment, the fuser members comprise an outer layer comprising a silicone rubber material. In embodiments, the release agent is a blended fluorosilicone release agent. In embodiments, the blended fluorosilicone release agent comprises a fluorosilicone release agent having pendant fluorocarbon groups blended with a non-functional release agent.
In a typical electrostatographic reproducing apparatus, a light image of an original to be copied is recorded in the form of an electrostatic latent image upon a photosensitive member, and the latent image is subsequently rendered visible by the application of electroscopic thermoplastic resin particles and pigment particles, or toner. The visible toner image is then in a loose powdered form and can be easily disturbed or destroyed. The toner image is usually fixed or fused upon a support, which may be the photosensitive member itself, or other support sheet such as plain paper.
The use of thermal energy for fixing toner images onto a support member is well known. To fuse electroscopic toner material onto a support surface permanently by heat, it is usually necessary to elevate the temperature of the toner material to a point at which the constituents of the toner material coalesce and become tacky. This heating causes the toner to flow to some extent into the fibers or pores of the support member. Thereafter, as the toner material cools, solidification of the toner material causes the toner material to be firmly bonded to the support.
Typically, the thermoplastic resin particles are fused to the substrate by heating to a temperature of between about 90° C. to about 200° C. or higher depending upon the softening range of the particular resin used in the toner. It may be undesirable; however, to increase the temperature of the substrate substantially higher than about 250° C. because of the tendency of the substrate to discolor or convert into fire at such elevated temperatures, particularly when the substrate is paper.
Several approaches to thermal fusing of electroscopic toner images have been described. These methods include providing the application of heat and pressure substantially concurrently by various means, a roll pair maintained in pressure contact, a belt member in pressure contact with a roll, a belt member in pressure contact with a heater, and the like. Heat may be applied by heating one or both of the rolls, plate members, or belt members. The fusing of the toner particles takes place when the proper combinations of heat, pressure and contact time are provided. The balancing of these parameters to bring about the fusing of the toner particles is well known in the art, and can be adjusted to suit particular machines or process conditions.
During operation of a fusing system in which heat is applied to cause thermal fusing of the toner particles onto a support, both the toner image and the support are passed through a nip formed between the roll pair, or plate or belt members. The concurrent transfer of heat and the application of pressure in the nip affect the fusing of the toner image onto the support. It is important in the fusing process that no offset of the toner particles from the support to the fuser member takes place during normal operations. Toner particles offset onto the fuser member may subsequently transfer to other parts of the machine or onto the support in subsequent copying cycles, thus increasing the background or interfering with the material being copied there. The referred to “hot offset” occurs when the temperature of the toner is increased to a point where the toner particles liquefy and a splitting of the molten toner takes place during the fusing operation with a portion remaining on the fuser member. The hot offset temperature or degradation of the hot offset temperature is a measure of the release property of the fuser roll, and accordingly it is desired to provide a fusing surface, which has a low surface energy to provide the necessary release. To ensure and maintain good release properties of the fuser roll, it has become customary to apply release agents to the fuser roll during the fusing operation. Typically, these materials are applied as thin films of, for example, non-functional silicone oils or mercapto- or amino-functional silicone oils, to prevent toner offset.
U.S. Pat. No. 4,257,699 to Lentz, the subject matter of which is hereby incorporated by reference in its entirety, discloses a fuser member comprising at least one outer layer of an elastomer containing a metal-containing filler and use of a polymeric release agent.
U.S. Pat. No. 4,264,181 to Lentz et al., the subject matter of which is hereby incorporated by reference in its entirety, discloses a fuser member having an elastomer surface layer containing metal-containing filler therein and use of a polymeric release agent.
U.S. Pat. No. 4,272,179 to Seanor, the subject matter of which is hereby incorporated by reference in its entirety, discloses a fuser member having an elastomer surface with a metal-containing filler therein and use of a mercapto-functional polyorganosiloxane release agent.
U.S. Pat. No. 5,401,570 to Heeks et al., the subject matter of which is hereby incorporated by reference in its entirety, discloses a fuser member comprised of a substrate and thereover a silicone rubber surface layer containing a filler component, wherein the filler component is reacted with a silicone hydride release oil.
U.S. Pat. No. 4,515,884 to Field et al., the subject matter of which is hereby incorporated by reference in its entirety, discloses a fuser member having a silicone elastomer-fusing surface, which is coated with a toner release agent, which includes an unblended polydimethyl siloxane.
U.S. Pat. No. 5,512,409 to Henry et al. teaches a method of fusing thermoplastic resin toner images to a substrate using amino-functional silicone oil over a hydrofluoroelastomer fuser member.
U.S. Pat. No. 5,516,361 to Chow et al. teaches a fusing member having a thermally stable FKM hydrofluoroelastomer surface and having a polyorgano T-type amino-functional oil release agent. The oil has predominantly monoamino functionality per active molecule to interact with the hydrofluoroelastomer surface.
U.S. Pat. No. 6,253,055 to Badesha et al. discloses a fuser member coated with a hydride release oil.
U.S. Pat. No. 5,991,590 to Chang et al. discloses a fuser member having a low surface energy release agent outermost layer.
U.S. Pat. No. 6,377,774 B1 to Maul et al. discloses an oil web system.
U.S. Pat. No. 6,197,989 B1 to Furukawa et al. discloses a fluorine-containing organic silicone compound represented by a formula. In addition, the reference mentions that fluorosilicone oils can be mixed with functional oils.
U.S. Pat. No. 5,757,214 to Kato et al. discloses a method for forming color images by applying a compound, which contains a fluorine atoms and/or silicon atom to the surface of electrophotographic light-sensitive elements.
U.S. Pat. No. 5,716,747 to Uneme et al. discloses a fluororesin coated fixing device with a coating of a fluorine containing silicone oil.
U.S. Pat. No. 5,698,320 to Ebisu et al. discloses a fixing device coated with a fluororesin, and having a fluorosilicone polymer release agent. In addition, the reference teaches that fluorosilicone oils can be mixed with conventional silicone oils.
U.S. Pat. No. 5,641,603 to Yamazaki et al. discloses a fixing method using a silicone oil coated on the surface of a heat member.
U.S. Pat. No. 5,636,012 to Uneme et al. discloses a fixing device having a fluororesin layer surface, and using a fluorine-containing silicone oil as a repellant oil.
U.S. Pat. No. 5,627,000 to Yamazaki et al. discloses a fixing method having a silicone oil coated on the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Blended fluorosilicone release agent for silicone fuser members does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Blended fluorosilicone release agent for silicone fuser members, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Blended fluorosilicone release agent for silicone fuser members will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3279832

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.