Blend for preventing or retarding the formation of gas hydrates

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C095S153000, C137S003000, C137S013000, C166S304000, C166S310000, C166S311000, C507S090000, C507S246000, C524S376000, C524S379000, C524S391000, C524S514000, C585S005000, C585S024000, C585S950000

Reexamination Certificate

active

06180699

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method for preventing or retarding the formation of gas hydrates or for reducing the tendency of such hydrates to agglomerate during the transport of a fluid comprising water and a hydrocarbon through a conduit, and, more particularly, to the addition to the fluid of a blend of a low molecular weight vinyl caprolactam polymer, or copolymers thereof, which are preferably made and applied in a suitable solvent, and a polyoxyalkylenediamine, to inhibit such gas hydrate formation.
2. Description of the Prior Art
It is well known in the art that the formation of gas hydrates in a conduit, e.g. a pipeline, during the transport of liquids, such as oil, and gases, particularly lower hydrocarbons, e.g. methane, ethane, propane, butane, isobutane and natural gas is a serious problem, especially in areas with a low temperature in the winter season or in the sea. Generally the temperatures are so low that gas hydrate formation, due to the inevitable presence of co-produced water in the wells takes place, if no special steps are taken. Insulation decreases the chance of gas hydrate formation; however, if the field is relatively small and far away from the production platform, the costs of using insulation are too high to make such field economically attractive. It is also known to add anti-freeze compounds, for example, glycol or methanol, during transport to minimize gas hydrate formation; however, large quantities of these compounds are required to be effective which is expensive. Alkyl glycosides also have been used for this purpose.
A representation of the prior art in this field are the following U.S. Pat. Nos. 4,915,176; 5,420,370; 5,432,292; 5,723,524; and 5,741,758; EPA 0526929A1; EPO 0323774A1; Can. Pat. Appln 2,073,577; WO 93/25798; WO95/17579; Gas Hydrates and Hydrate Prevention 73 GPA Annual Convention, pgs 85-93; WO 96/108456; WO 96/108636; WO 93/25798; EPA 0457375and WO 9412761.
The poly(vinyl caprolactam) (PVCL) described in U.S. Pat. No. 5,723,524 was synthesized in isopropanol and had an average molecular weight of 36,000 amu, as determined using size exclusion chromatography, otherwise known in the art as gel permeation chromatography (GPC, polyethylene glycol as standard).
The polyoxyalkylenediamines described in U.S. Pat. No. 5,741,758 was considered a more effective kinetic inhibitor than commercially available GAFFIX® VC-713 (International Specialty Products), a terpolymer of vinyl caprolactam/polyvinylpyrrolidone/dimethylaminoethyl methacrylate having an average molecular weight of approximately 200,000, or PVP (International Specialty Products), polyvinylpyrrolidone.
SUMMARY OF THE INVENTION
What is described herein is a useful composition for effectively preventing or retarding the formation of gas hydrates, or for reducing the tendency of gas hydrates to agglomerate, during the transport of a fluid comprising water and a hydrocarbon, through a conduit, comprising a blend composition of vinyl caprolactam homopolymer (PVCL) having a low molecular weight, of about 500 and about 2500, or copolymers or terpolymers thereof, preferably with vinyl pyrrolidone (VP), and a polyoxyalkylenediamine, described in U.S. Pat. No. 5,741,758, or a polyoxyarylenediamine in a suitable solvent. Preferably, the homopolymer or copolymer is made and applied in a low molecular weight glycol ether, which, most preferably, is 2-butoxyethanol (BGE).
It was surprising and unexpected that polyvinyl caprolactam, a known gas hydrate inhibitor, could be partly replaced with an amine, which itself is a poorer gas hydrate inhibitor, to provide compositions with superior gas hydrate inhibition performance properties compared to the polyvinyl caprolactam formulation. Further, it is believed that the blend of this invention inhibits corrosion of metals in a pipeline system.
DETAILED DESCRIPTION OF THE INVENTION
The caprolactam polymer in the blend composition of the invention with polyoxyalkylenediamine which exhibits advantageous inhibitory characteristics is a homopolymer of vinyl caprolactam, or copolymer or terpolymer thereof, having a molecular weight of about 500 to about 2500, as determined by GPC using polyethylene glycol as the standard.
Generally, the blend of caprolactam polymer and polyoxyalkylenediamine is present in an amount of about 30 to 50% by weight of the composition, i.e. in admixture with the solvent. The blend inhibition concentration in the pipeline, i.e. in the aqueous phase, is about 0.1 to 3% by weight. The solvent inhibition concentration, accordingly, is about 0.1 to 5% by weight in the aqueous phase.
Suitable solvents include low molecular glycol ethers containing an alkoxy group having at least 3 carbon atoms, N-methylpyrrolidone (NMP), ethylene glycol, water and blends thereof. Representative glycol ethers include
2-butoxyethanol (ethylene glycol monobutyl ether); propylene glycol butyl ether; (diethylene glycol) monobutyl ether; and 2-isopropoxy-ethanol.
2-Butoxyethanol (BGE) is preferred.
Preferably the low molecular weight caprolactam polymer or copolymers are made in the desired solvent and maintained therein in the composition of the invention. Less preferably, they are made in another solvent, such as isopropanol solvent, the solvent removed, and the desired glycol ether solvent added.
The composition of the invention also includes low molecular weight copolymers and terpolymers of vinyl caprolactam with one or more monomers selected from vinylpyrrolidone; acrylamide; N-alkyl acrylamides, e.g. N,N-dimethylamino acrylamide; N-[1-(2-pyrrolidonylethyl)] acrylamide; N,N-dialkyl aminoalkyl methacrylamide, e.g. N,N-dimethylamino propyl methacrylamide; N,N-dialkyl aminoalkyl (meth)acrylates; e.g. N,N-dimethylaminoethyl (meth)acrylate and quaternized salts thereof, including N-alkyl bromides; tetrahydrofurfuryl methacrylate; and the like. A copolymer with vinylpyrrolidone monomer is preferred.
The polyoxyalkylenediamine component of the synergistic low molecular weight polyvinyl caprolactam-polyoxyalkylenediamine/polyoxyalkylenediamine blend composition of the invention is described in detail in U.S. Pat. No. 5,741,758. Useful diamines generally have the general formula:
Preferred compounds have the following general formula:
where R has 16 to 18 carbon atoms.
Other preferred compounds of the above formulae have the sum of b +f+g from about 20 to about 30, most preferably 25 to 30. Compounds of Formula (II) are commercially marketed as ETHODUOMEEN® T/25 by AKZO NOBEL and commonly referred to as polyethoxylated tallow propylenediamine.
A compound of the formula
Is commercially marketed by Huntsman Corp. as JEFFAMINE® D-230 and is a polyoxypropylene diamine.
A compound having the structure:
H
2
N—C
d
H
2d
&Parenopenst;OC
n H
2n
&Parenclosest;NH
2
Is marketed by Huntsman Corp. as JEFFAMINE® EDR-148 and is a triethylene glycol diamine.
The following examples are provided to illustrate the invention.
GENERAL METHOD
The gas hydrate inhibition tests were conducted in a 500 ml, 316 stainless steel autoclave vessel having a usable volume of 200 ml, equipped with a thermostated cooling jacket, sapphire window, inlet and outlet, platinum resistance thermometer (PRT) and magnetic stirring pellet. The rig is rated up to 400° C. and down to −25° C. Temperature and pressure are data logged, while the cell content is visually monitored by a boroscope video camera connected to a time lapsed video recorder. Hydrate formation in the rig is detected using a combination of three methods: visual detection of hydrate crystals, decrease in vessel pressure due to gas uptake and by the temperature exotherm created by heat released during hydrate formation.
The rig was cleaned prior to running a blank and/or test solutions. An air drill with wet and dry emery paper was used to remove traces of any adsorbed chemicals therein with a small amount of water added to the rig. The vessel was then rinsed several times with double distilled water. A blank solution of 200 ml of double distilled water

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Blend for preventing or retarding the formation of gas hydrates does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Blend for preventing or retarding the formation of gas hydrates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Blend for preventing or retarding the formation of gas hydrates will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2548624

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.