Valves and valve actuation – Fluid actuated or retarded – Pilot or servo type motor
Reexamination Certificate
2003-01-13
2004-03-09
Derakshani, Philippe (Department: 3754)
Valves and valve actuation
Fluid actuated or retarded
Pilot or servo type motor
C251S063500
Reexamination Certificate
active
06702248
ABSTRACT:
BACKGROUND OF THE INVENTION
I. Field of the Invention
This invention relates generally to air-accumulator and discharge devices of the type generally known as air blasters, air cannons, or blast aerators. More particularly, the present invention relates to heavy duty blast aerators of the type classified in United States Patent Class 222, Subclasses 2, 3 and 195 and Class 251, Subclass 30.02.
II. Description of the Prior Art
As is well known to those with skill in the art, the passage of bulk materials through conventional handling equipment is often degraded or interrupted. Typical bulk materials comprise concrete mixtures, grains, wood chips or other granular materials disposed within large hoppers or storage bins. In conventional, conically shaped hoppers, for example, bridges or arches of bulk materials often form, preventing or minimizing the orderly flow or delivery of granular materials. Often, “rat holes” or funnels build up, and material passage is severely degraded or halted altogether. Particles of bulk material may form obstructive bonds by adhesion due to chemical or hydrostatic attraction. Particles may also interlock because of horizontal and vertical compression. Such materials usually tend to cake or congeal during bulk processing. When moisture accumulates, unwanted caking tends to block flow. It is also recognized that friction between bulk material and the walls of a typical bunker or hopper in which the material is confined decreases flow efficiency.
Blast aerators or air cannons have long been employed to dislodge blocked or jammed bulk material. Storage bins or hoppers, for example, are often fitted with one or more high pressure air cannons that periodically blast air into the interior to dislodge caked particles, break funnels and bridges, and destroy rat holes. Bulk flow problems can temporarily be stopped by physically vibrating the hopper or container to shake loose the jammed materials. But not all materials may be dislodged in this manner. For example, large concrete bunkers may be impossible to vibrate. Materials like soft wood chips ordinarily absorb vibratory energy and must be dislodged by other methods.
In many applications air blasters are preferred over vibrators because of efficiency. The forces outputted by blast aerators are applied directly to the material to be dislodged, rather than to the walls of the structure. Modern air blasters usually outperform over air slides, air wands, and various air screen devices which operate at low pressures. Live bottoms in hoppers or bins are limited in their effectiveness, since they may tend to create bridging or arching of material. Modern air cannons or blast aerators are intended for use as a flow stimulator against materials that are primarily moved by gravity. They are not intended to be the prime movers of such materials, and for safety purposes they should not be used to initiate the flow or movement of bulk materials unless a gravity feed is employed.
Typical blast aerators comprise a large, rigid holding tank that relatively slowly accumulates air supplied through conventional high pressure air lines provided at typical industrial facilities. A special valve assembly associated with the tank includes a high volume discharge opening directed towards or within the target application. The valve assembly periodically activates the air cannon in response to a trigger. When the blaster is detonated, the large volume of air accumulated in the holding tank is rapidly, forcibly discharged within a few milliseconds. Compressed air released by a modern blast aerator strikes the bulk material at a rate of between five hundred feet per second to eight hundred feet per second. Materials exposed to this high volume inrush are forcibly dislodged by impact. The large volume of air outputted by the aerator spreads throughout the bin or hopper, distributing forces throughout the interior that tend to homogenize and dislodge the mixture. The impacting shock wave rapidly destroys any formations of bulk material that might otherwise hinder fluid flow.
After an exhaust blast, the valve apparatus returns to a “fill” position, wherein an internal, displaceable piston typically blocks the aerator blast output path. The cycle repeats as air that has relatively slowly accumulated again within the blaster is subsequently discharged during the next cycle. A variety of methods have been proposed for controlling the aerator valve assemblies. Various means such as electrical solenoids have been provided for allowing or forcing the discharge piston to rapidly retreat from its normally sealed, blocking position abutting the discharge valve passageways.
U.S. Pat. No. 4,469,247, issued Sep. 4, 1984, and owned by Global Manufacturing Inc., discloses a blast aerator for dislodging bulk materials. The blast aerator tank has a blast discharge opening coaxially aligned with its longitudinal axis. The blast discharge assembly comprises a rigid, tubular discharge pipe comprising an internal shoulder that forms a valve seat. A resilient piston coaxially, slidably disposed within the pipe abuts the valve seat to seal the tank during the fill cycle. In the fill position the seal is maintained by a chamfered end of the piston that matingly, sealingly contacts a similarly chamfered seat portion of the valve seat assembly. A cavity at the piston rear is pressurized to close the valve by deflecting the piston. During periodic cycles, discharge occurs in response to cavity venting, whereupon the piston is rapidly displaced away from the valve seat, exposing the discharge pipe opening to the pressurized tank interior.
Blast aerators characterized by the foregoing generalized structure may be seen in U.S. Pat. Nos. 3,651,988; 3,915,339; 4,197,966; 4,346,822; and 5,143,256. Other relevant blast aerator technology may be seen in Great Britain Pat. Nos. 1,426,035 and 1,454,261. Also relevant are West German Patent 2,402,001 and Australian Pat. No. 175,551.
Global Manufacturing patent No. 4,496,076 teaches a method of employing a plurality of air cannons in a controlled array.
In some prior art aerator designs, the piston and valve assembly are disposed at a right angle relative to the discharge flow path. In addition, many blast aerators use a valve assembly that is mounted externally of the accumulator tank. The latter design features are seen in U.S. Pat. Nos. 3,942,684; 4,767,024; 4,826,051; 4,817,821; and 5,853,160.
During the hundreds of thousands of repetitive discharge cycles occurring over the normal life of a typical blast aerator, critical moving parts will inevitably wear and deform. Typical pistons encounter extremely high stresses from heat, friction, and pressure that eventually result in component failure. For example, as the piston deforms or wears, its ability to properly seal during the critical “fill cycle” is impaired. In many prior art designs that portion of the piston utilized to create a seal also functions as the working surface upon which tank pressure acts to force the piston to its rearward “blast” position, further aggravating component stress and shortening valve life. In operation, the piston must rapidly travel away from the seal during the discharge cycle. As it deforms over hundreds of thousands of blast cycles however, it may lose its symmetry, and misalignment within the valve tube can slow piston travel, enlarging the blast time period and denigrating the force of the discharge. When critical structural parts fail, injury to operating personnel may occur. At the very least, aerator component breakdown may severely limit bulk flow efficiency. Therefore some form of dynamic control over the piston that limits stress would seem desirable. Some attempts in this direction are acknowledged.
U.S. Pat. No. 5,441,171 discloses a protrusion on the rear of a slidably captivated piston to help slow the piston after firing. This design does not bleed air off in a controlled fashion and in fact the protrusion does not shut off the flow of air out of the valve body.
U.S. Pat. No. 5,517,898 discloses a pneumatic cylinder in
Carver Stephen D.
Derakshani Philippe
Global Manufacturing Inc.
LandOfFree
Blast aerator with springless, pneumatically dampened actuator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Blast aerator with springless, pneumatically dampened actuator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Blast aerator with springless, pneumatically dampened actuator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3198354