Bladeless turbocharger

Pumps – Motor driven – Fluid motor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C415S090000, C415S202000, C415S206000, C415S212100, C416S22300B

Reexamination Certificate

active

06368078

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The claimed invention relates generally to turbochargers designed to increase internal combustion engine performance.
2. Description of the Prior Art
Turbochargers have typically used a turbine driven by exhaust gas from an internal combustion engine to drive a compressor for compressing air that is injected into the engine intake of the internal combustion engine in order to increase power output and efficiency.
There are several factors leading to engine power and efficiency. One key factor to creating power is the amount of fuel that can be burned which is directly related to the amount of air that can be used in the engine. The second is engine compression ratio; greater compression ratio results in greater power and efficiency. Compression ratio is limited due to knock in spark ignited engines, which will damage an engine and reduce power. Of importance to this invention, two of the many variables resulting in knock are the amount of air mass in the combustion chamber and the temperature of the air. Low air mass and low temperatures result in lower chance of engine knock. Therefore, highest engine power is achieved by high mass airflow of cool air and the highest possible compression ratio. This increase in power output and efficiency is accomplished by increasing the mass flow rate of air injected in the engine intake of the internal combustion engine. However, compression of the air that is injected into the engine intake results in making the flow of the air turbulent and increases the temperature of the air to be injected. This creation of turbulence and increased temperature are undesirable by products of providing a high mass flow rate of air to the engine intake. In order to counter these effects, the prior art typically employs a diffuser to reduce air turbulence and intercoolers to control air temperatures.
In diesel engines, the upper temperature limit of intake air charge is dictated by emissions, as higher temperature air mass negatively impacts an engine's emission output.
The turbine, which typically consists of a housing and a bladed rotary wheel vane attached to a shaft, drives the compressor. The bladed rotary wheel vane usually employs complicated vane geometry to transfer the linear energy of the exhaust gases entering the turbine into rotational energy that drives the compressor. These types of turbines are often expensive to manufacture and are relatively inefficient. The size of the turbine is typically governed by the power characteristics of the internal combustion engine on which it will be used.
The compressor typically consists of a housing and a bladed impeller. Air is inlet into the compressor and compressed between the impeller blades and the housing which increases the mass of air within a given volume. This compressed air is then injected into the engine intake. The size of the compressor is typically governed by the power characteristics of the internal combustion engine on which it will be used.
The air intake requirements of the internal combustion engine varies during engine operation due to fluctuating demand. This requires the turbocharger to be capable of varying the pressure and volume of air input relative to engine requirements. Current technology utilizes bypass mechanisms that vent engine exhaust gases around the turbine in order to diminish the velocity of the system which reduces the output of the compressor.
There are several turbochargers disclosed in the prior art that operate as here described. Some examples are U.S. Pat. Nos. 5,406,796, 4,367,626, 4,124,979, and 3,975,911. U.S. Pat. No. 5,406,796, issued to Hiereth, comprises a compressor driven by a turbine that is on the same shaft which is driven by exhaust gas from an internal combustion engine. U.S. Pat. No. 3,975,911, issued to Borisovich, is comprised of a compressor driven by a turbine that is on the same shaft which is driven by exhaust gas from an internal combustion engine. In addition, Borisovich also discloses the use of a diffuser to reduce turbulence in the air that is being injected. U.S. Pat. No. 4,124,979, issued to Tholen, discloses a turbocharger that uses an intercooler to control the temperature of the air that is being injected into the internal combustion engine.
Turbochargers use energy from four or two stroke engines exhaust to pump intake air into said engine. High pressure exhaust gases rotate the driver of the turbine which in turn rotates the compressor of the system that is on the same shaft. The compressor then pumps air into the intake portion of the engine. Current turbocharger compressors and drivers utilize complicated vane geometry to impart air movement. These are relatively inefficient which results in insufficient use of exhaust gases and heating of output air from the turbocharger. The geometry of these components is difficult and expensive to manufacture. Accordingly, it would be desirable to have a turbocharger that makes more efficient use out of the energy provided by the exhaust gases without increasing the turbulence and temperature that is associated with increasing the mass flow rate of air entering the internal combustion engine.
SUMMARY OF THE INVENTION
Accordingly, it is the object of the claimed invention to provide a turbocharger that can efficiently increase the power output of the internal combustion engine by increasing the mass flow rate of air that enters a engine intake of the internal combustion engine with a reduced amount of turbulence and temperature change imparted upon the air entering the engine intake.
Another object of the claimed invention is to provide a turbocharger that reduces exhaust manifold back pressure.
Still another object of the claimed invention is to reduce the manufacturing costs associated with the production of a highly efficient turbocharger.
To achieve the foregoing and other objectives, and in accordance with the purposes my invention, a bladeless turbocharger comprising both a blower and a turbine of similar designs known herein as a bladeless blower and a bladeless turbine is provided. The bladeless turbocharger utilizes engine exhaust gases from an internal combustion engine entering the bladeless turbine to drive the bladeless blower that produces a charge air to an internal combustion engine for the purpose of increasing engine power. Both the bladeless blower and the bladeless turbine are comprised of flat rigid spaced disks contained in an annular shaped volute that utilizes laminar viscous boundary layer drag to achieve more efficient results.
It is well known that fluids have a resistance to flow adjacent to a stationary surface known as the boundary layer effect. This boundary layer is the region of fluid adjacent to the surface in which viscous forces promote laminar fluid flow. The boundary layer thickness is defined as the distance from the surface to a point within the fluid stream where the velocity of the fluid is within one percent of the free stream velocity. The mass flow rate of fluid within the boundary layer is higher than that within the free stream due to the higher efficiency of laminar flow. Accordingly, the mass flow rate of fluid adjacent to a solid moving surface is greater than the mass flow rate of fluid that would pass through the same region in the absence of the boundary layer effect. My invention utilizes the laminar flow of fluid present within the boundary layer effect to accomplish the aforementioned intention of a system producing a cool air charge for an internal combustion engine powered by the engine's exhaust gases.
Current turbocharger technology normally requires the use of a diffuser to diminish the turbulence imparted to the air charge before it is introduced into the intake portion of the engine. Highly turbulent air negatively impacts efficient air flow. In my invention, the viscosity of air acting against the moving blower disks produces circular air flow between blower disks. The resulting annular air speed and centrifugal forces create pressure and air flow. The non tur

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bladeless turbocharger does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bladeless turbocharger, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bladeless turbocharger will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2828273

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.