Blade for an ice skate

Land vehicles – Skates – Runner type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S028000, C280S028150, C280S011180

Reexamination Certificate

active

06523835

ABSTRACT:

FIELD OF THE INVENTION
The present invention teaches a runner or blade for an ice skate having greater width at the edge at the anterior end relative to the middle. Further, the present invention teaches a blade having greater width at the edge at both the anterior end and posterior end relative to the middle. In addition, the present invention teaches a runner or blade for an ice skate including thermoplastic, metal, and fiber materials. Moreover, the present invention teaches a novel hinged blade for a skate.
BACKGROUND OF THE INVENTION
Runners or blades for ice skates have been traditionally made of metal such as steel. In recent years, the preferred metal for use in ice skate blades has been stainless steel, such as that supplied by the Sandvig company. Traditional steel blades are generally stronger and hold an edge better than stainless steel, but the latter has the advantage of being lighter and resistant to rust and corrosion. Conventional metal skate blades for use in hockey are often removable and generally have a configuration including substantially parallel sides, rocker, and an edge. It is possible that greater design freedom, reduced weight, lower costs, and improved performance can be attained by using thermoplastic, composite, and ceramic materials in a skate blade. In this application, the working surface of a blade is hereby defined as that portion which is intended for contact with the ice surface for the purpose of performing useful work.
There have been numerous attempts to improve blades for ice skates by the addition of various treatments and coatings. U.S. Pat. No. 5,255,929 granted to Jerome Lemelson teaches a diamond coating for use on a skate blade. Diamond coatings are also used on knives, such as J.A. Henckels Twinstar MagnaDur® knives. Diamond coatings can be quite smooth and are known to be the hardest in existence. U.S. Pat. No. 3,918,728 granted to Walter Stugger and Arnold Sprung teaches a snow ski including a metal edge having a thin layer of hard tungsten carbide particles fused thereto. U.S. Pat. No. 4,131,288 granted to Stephen Wilson teaches a skate blade including a strip of tungsten carbide which is induction brazed to carbon steel. U.S. Pat. No. 5,516,556 granted to Larry Baker and Harry White teaches a polytetrafluoroethylene (PTFE) composition for burnishing an ice skate blade.
U.S. Pat. No. 4,314,708 granted to Peter Zuuring teaches the inclusion of a relatively soft thermoplastic material having a wettability index of equal to or greater than 90 degrees such as polytetrafluoroethylene (PTFE) or TEFLON®, or a harder ultra high molecular weight polyethylene material (UHMW PE) having similar wettability characteristics in conjunction with a metal ice skate blade. Definition and discussion of the term “wettability index” and numerous hydrophobic materials having a wettability index equal to or greater than 90 degrees can be found in U.S. Pat. No. 5,832,636 granted to Robert Lyden and Souheng Wu, this patent hereby being incorporated by reference herein. Materials having a wettability index equal to or greater than 90 degrees are hydrophobic, that is, they are characterized by having a low surface energy and tend to repel water. When a traditional ice skate blade travels across the ice, the heat which is present in the blade, and also the friction and dampening induced by movement causes ice crystals to melt underneath the blade. As result, an ice skate blade can at least partially be caused to hydroplane on water. This can lower the resistance and friction acting upon an ice skate blade, and within certain limitations, can be associated with a faster skate and less energy expenditure by a skater. The inclusion of materials having low surface energies and a wettability index equal to or greater than 90 degrees is known to further reduce the static and dynamic coefficient of friction of an ice skate blade, thus can potentially result in an even faster skate that requires even less energy expenditure by a skater.
However, polytetrafluoroethylene (PTFE), or TEFLON®, a hydrophobic material, is known to be relatively soft and subject to creep. Accordingly, it does not hold up well nor is it hard enough to use in a substantial portion of an ice skate blade. A harder hydrophobic material such as ultra high molecular weight polyethylene material (UHMW PE) can be more suitable for use, but when used alone even this material is not hard or long wearing enough to use on the edges of an ice skate blade. Accordingly, it can be advantageous to use robust thermoplastic materials and to include extremely hard metal filler materials such as titanium or tungsten carbide in an ice skate blade. Further, the use of fiber filler materials such as glass fiber, aramide fiber, carbon fiber, boron fiber, or stainless steel fiber can be advantageous. The use of metal fibers, carbon fibers, or other like fillers, can also render an ice skate blade electrically conductive. This can improve the performance of a blade by reducing the possible build-up of static electrical charge. European Patent 311,196 granted to Nierstrasz, and Dutch Patent 8,702,068 granted to Van Ooijen, teach skate blades which include ceramic and/or fiber reinforced materials.
When playing hockey, skaters will engage in frequent and sudden accelerations. In this regard, it is known that a reduction in skate blade weight, and generally, the weight of a hockey player's skates can have a significant impact on their demonstrated ability to accelerate and attain high skating speeds. It is also known that a reduction in the penetration of an ice skate blade into the ice can, within certain limitations, result in greater speed and better skating performance. Further, reduced penetration of a blade into the skating surface will result in less rapid degradation and so enhance the longevity of the skating surface.
With reference to a metal ice skate blade, there is generally an inverse relationship between the mass and contact area of the blade, and exhibited speed, that is, the greater the mass of the blade, and/or the larger the contact area of the blade, then the slower is skating performance with the blade and associated skate. However, the relationship between the mass and/or contact area of a substantially thermoplastic skate blade, and exhibited speed can be more complex. In particular, there can be an limited range of optimal contact area for a given skater having known mass who imparts a known force with a characteristic skating technique, thus either greater or lesser surface contact area can result in slower skating performance with a given blade and associated skate.
Moreover, as the forces and pressure applied to various portions of an ice skate blade are not uniform in any given characteristic skating technique, the optimal configuration of an ice skate blade is not necessarily characterized by substantially consistent and unchanging width at the edge throughout the runner or blade as is prevalent in the prior art. By way of analogy, it is now recognized in the sport of skiing that widening both the tips and tails of a ski can provide better maneuverability and handling characteristics for some skiers given certain snow conditions. The present invention teaches novel skate blades which have varying width dimensions at the edge in different portions.
U.S. Pat. No. 216,159 granted to Dowler in 1879, hereby incorporated by reference herein, discloses a skate blade having greater width at the edge near the anterior and posterior ends relative to the middle. However, as shown in the drawing figures, the blade taught by Dowler attains maximum width at the edge at a distance short of both the anterior and posterior ends, and the blade then substantially decreases in width at the edge and tapers towards the respective ends. This configuration is dysfunctional with respect to blades intended for use in modern hockey skates or speed skates. When a skater would use a blade having the configuration illustrated by Dowler with the side stroke technique commonly used in hockey and speed skating, an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Blade for an ice skate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Blade for an ice skate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Blade for an ice skate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3142581

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.