Bistable electro-magnetic mechanical actuator

Electricity: magnetically operated switches – magnets – and electr – Magnets and electromagnets – With magneto-mechanical motive device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C335S229000

Reexamination Certificate

active

06512435

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of electro-magnetic mechanical actuators and more particularly it relates to an actuator that provides a powered toggle stroke between two unpowered but positively stabilized stroke-end conditions, suitable for locking movable components in place by remote control as frequently required in defense ordnance including missiles and other aerospace craft as well as in ground vehicles, marine vessels and in many kinds of buildings such as residential, industrial, and commercial.
BACKGROUND OF THE INVENTION
Usage of electro-magnetic actuators has continuously expanded as part of the overall technological advancement of communications, electronics, aerospace and defense ordnance of all kinds including missiles. Such actuators play a key role in a wide variety of present day equipment, especially remotely controllable mechanisms in vehicles, spacecraft, aircraft, missiles, boats, ground equipment, public, commercial and residential buildings, garages or parking areas, etc.
Many of these needs are for a basic actuator in coaxial plunger form wherein the only moving portion is an armature fitted with a central pin that the actuator can extend/retract electrically over a designated linear displacement or “stroke”. The pin itself can serve directly as a lock bolt, e.g. for a mechanism, door, window, cover, etc., or the pin can be adapted as a drive rod to drive other mechanisms.
Typically, operation can be from a DC (direct current) power source, e.g. a 12 volt battery. Since locks or locking devices are often left unattended for very long period of time, both stroke-end conditions of the actuator's moving element, typically an armature, should be passive i.e. not consuming any standby electrical power. Furthermore, in these stroke-end locations, the armature needs to be positively stabilized with an adequate amount of holding force; for operating in vertical orientation, the total holding force would need to be made substantially greater than the weight of the armature. Even in horizontal orientation, simple inertia and static friction alone are insufficient to prevent shifting away from the stroke-end position due to vibration, acceleration, etc. In a vehicular lock, for example, if the bolt were not held at the stroke-end positions, it could tend to shift away from the end position due to vehicle movements, acceleration and/or vibration.
Especially in fields such as aerospace, missiles and other defense products, the actuator must be able to deliver a high transfer load and to remain stable in the end conditions under adverse ambient conditions including high acceleration.
Furthermore, it is generally preferable for the actuator to have only two terminals, especially in situations such as remote control that require long wiring runs. A bistable device can be made to operate from two wires if it is made to reverse its stroke by reversing the polarity of the DC.
Such requirement are not satisfied by a simple electromagnet and armature such as in a simple relay or solenoid, since the armature motion cannot be reversed by reversing the current; furthermore, even if the armature is made stable at one stroke-end when the coil is unpowered, the other stroke-end would require continuous electric power or some other special provision such as a spring-loaded mechanical toggle to hold it in the “on” condition.
Commercial electromagnetic linear actuators are made in an economical and efficient solenoid form having a coil that is able to move an iron core or armature, typically in the manner of a plunger. Basically, whether AC or DC powered, ordinary solenoids can only draw the armature back into its central “home” position relative to the coil from either of two opposite offset initial locations; the armature must be returned to either of the initial offset locations by some other force such a gravity or metal springs. Also there are large swings of coil impedance due to large variations in the magnetized air gap separation and in flux density, which make the electrical driving system inefficient and difficult to design.
As an alternative to costly rotary electric motors and/or other costly complex mechanisms, it is known in the art to obtain bi-stable operation utilizing two complete electromagnetic actuators working in opposite directions and controlled by selecting between one coil for A-B and the other coil for B-A actuation: this actuator system would require more than two electrical terminals and connecting wires. Such a system could be further evolved to utilize a common armature or core that can be driven in either direction by selecting one of two coils.
Positive holding force at both stroke-end positions could be implemented by deploying a pair of permanent magnets, located to each act at respective opposite ends of the stroke.
Operating on DC and introducing at least one permanent magnet into the main motive function of the actuator enables travel reversal to be accomplished by current direction, and opens up the possibility of also utilizing the permanent magnetism to provide the necessary end holding force to hold the armature in one or both of its two stable end positions. However, in known art, such a system is expected to require two permanent magnets: one for each of the two stable stroke-end positions.
DISCUSSION OF KNOWN ART
Stroke-end holding force in conventional vehicular locks is often implemented by some form of mechanical force such as from metallic springs in coiled or other form.
Patents showing mono-stable lock actuators utilizing a single solenoid with spring bias are exemplified by U.S. Pat. Nos. 3,576,119, 4,917,419, 4,907429 and 4,679,834.
U.S. Pat. Nos. 5,199,288 and 4,703,637 exemplify actuators that obtain bistable stroke-end positions for locking and unlocking purposes through the use of a rotary electric motor typically utilizing a worm gear engaging a threaded shaft or pinion.
U.S. Pat. No. 5,231,336, by the present inventor, discloses a mono-stable electromagnetic actuator for active vibration control. The magnetic armature of this actuator operates in the voice coil mode to create a linear vibratory motion under the influence of a sinusoidal current through the surrounding coils. A positive current in the coils drives the armature in one direction while a negative current drives the armature in the opposite direction. Removing the current returns the armature to its stable central rest position under influence of the magnetic field and internal springs. This construction is inherently mono-stable at the center position: it would require radical redesign to provide a stable unpowered armature position on each end of the stroke.
U.S. Pat. No. 4,829,947 by Lequesne for variable lift operation of a bistable electro-mechanical poppet valve actuator discloses an automotive valve actuating device whereby a valve, with attached armature is spring-biased toward a neutral central position but held in a full open or a closed position by permanent magnets having associated coils. Activation of a coil can fully cancel the field of the associated magnet to allow the spring to move the valve to the other position.
U.S. Pat. No. 4,533,890 to Patel discloses a PERMANENT MAGNET BISTABLE ACTUATOR for automotive valves, having a pair of solenoid coils acting on a common central core which requires two coaxial permanent magnets to provide bi-stability.
OBJECTS OF THE INVENTION
It is an object of the present invention to provide an actuator, suitable for locking purposes in missiles, aerospace craft and the like, providing bistable operation with two unpowered opposite stroke-end conditions that are positively stabilized by design-controllable end-holding force to withstand designated axial acceleration loading.
It is a further object of the present invention to make the actuator simple and inexpensive and in a basic coaxial form that utilizes a minimum quantity of coils and permanent magnets, preferably only one of each.
SUMMARY OF THE INVENTION
The aforementioned objectives have been accomplished in the pre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bistable electro-magnetic mechanical actuator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bistable electro-magnetic mechanical actuator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bistable electro-magnetic mechanical actuator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3052619

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.