Bisphosphonate conjugates and methods of making and using...

Organic compounds -- part of the class 532-570 series – Organic compounds – Four or more ring nitrogens in the bicyclo ring system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C544S244000, C544S276000, C514S079000, C514S080000, C514S081000, C514S086000, C514S089000, C514S107000, C514S108000, C546S022000, C546S024000

Reexamination Certificate

active

06750340

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to particular bisphosphonate compounds, and in particular, to bisphosphonate conjugates that are useful in the treatment of soft tissues surrounding bone and bone-related diseases, such as bone cancer and osteoporosis.
BACKGROUND OF THE INVENTION
Bisphosphonates are known to be useful in the treatment of degenerative bone disorders. Bone degeneration diseases, including Paget's Disease and osteoporosis, have proven difficult to treat because the mechanisms involved are not well understood. Bisphosphonic acid derivatives are known to be osteoselectively taken up by bone tissue. Moreover, bone scanning agents based on the use of some bisphosphonic acid compounds have been used in the past to achieve desirable high definition bone scans (see e.g., U.S. Pat. No. 4,810,486 to Kelly et.al). Other bisphosphonate derivatives have been used as therapeutic agents for bone diseases such as osteoporosis, rheumatoid arthritis, and osteoarthritis (see e.g., U.S. Pat. No. 5,428,181 to Sugioka et.al). Finally, bisphosphonate compounds are known as being useful in inhibiting bone loss, believed to act in a manner which hinders the activity of osteoclasts, so that bone loss is diminished. Bisphosphonate therapy has, however, in the past, frequently been accompanied by severe side effects, such as severe adverse effects on bone development and overall somatic growth.
A need exists for compounds which have the ability to inhibit bone resorption effects and that inhibit mineralization without an increase in toxicity. Moreover, a need exists for compounds that may be useful to deliver bisphosphonates to a cell and within a cell. It is believed that by providing an ability to supply bisphosphonate to a cell, entry ports into the cell can be blocked, thus facilitating various treatment regimens Alternatively, delivery of bisphosphonate to and within a cell by use of particular delivery agents, may facilitate incorporation into the cell of bisphosphonate compounds which then can be used by the cell in ameliorative ways. A need exists for novel bisphosphonate as a delivery vehicle that can selectively target bone and deliver therapeutic drugs or toxins to bone and surrounding soft tissue, leading to unique and novel treatment regimens. Finally, a need exits or improved bisphosphonate compounds that can aid in bone scanning diagnostics.
SUMMARY OF THE INVENTION
Although basic structural requirements for bisphosphonate actions have been defined, the precise structure-activity relations have not been defined, and thus, the molecular mechanisms of action are still unknown. Rational design of compounds for various clinical indications is therefore stymied without an appreciation of such molecular mechanisms. Moreover although many bisphosphonates have been synthesized, each of them has shown its own physiochemical and biologic characteristics, and thus, it is not possible to extrapolate from the results of one compound to others with respect to their actions (see e.g. Fleisch, “
Mechanisms
0
£ Action
0
£ the Bisphosphonates
” Medicina, Buenos Aires, 57:65-75 1997). The biological effects of bisphosphonates in calcium-related disorders are attributed to the incorporation of the bisphosphonates in bone, enabling direct interaction with osteoclasts and/or osteoblasts. The high accumulation of bisphosphonates in bone, due to their high affinity for hydroxyapatite (HAP) is essential for mediating in vitro and in vivo activity.
One aspect of the present invention relates to the synthesis, pharmaceutical composition and medical use of bone-seeking bioconjugates made up of natural vitamins and known bisphosphonates. Nitrogen-containing bisphosphonates are known to act by binding to a specific intracellular target at a site that is complementary in structure to the bisphosphonate side chain. In particular, vitamin B6 and its phosphorylated derivatives are known to have high affinity to different proteins. in addition they can enhance transport of small molecular weight compounds (in form of prodrug) through cell membrane. Thus, vitamin B6-bisphosphonate conjugates may have a dual role: (1) a new highly effective bone disease drug; and (2) a specific vehicle for delivery of known bisphosphonates to intracellular targets. In particular, pharmaceutically acceptable vitamin B6-bisphosphonate conjugates and their salts of the present invention are characterized in that they have the general structure:
Vitamin B6-bisphosphonate Conjugates
The pharmaceutical compositions of the present invention, as described herein below, offer an attractive delivery vehicle in which to deliver and concentrate drugs and proteins to normal and abnormal bone tissue, soft tissue surrounding bone and bony lesions. Bony lesions include but are not limited to cancer, osteomyelitis, soft tissue infection surrounding bone, bone marrow, bone disease such as Paget's disease, etc.
In addition, such compositions may include bone-seeking radioisotope conjugates for use in imaging and therapy. In particular the use of technetium (Tc) and rhenium (Re) for imaging and therapy of bone is encompassed by the present invention. Preferably, the isotopes Tc99m, Re 184 and Re 186 are utilized for imaging (Tc) and for therapeutic applications (e). Re184 and Re186 both emit high energy beta-particles. Re 184 and Re 186 can be obtained, for example, from NeoRx, Seattle, Wash., or other sources. Re 186 also emits a gamma ray that can be detected by a gamma camera.
Yet another aspect of the present invention relates to bisphosphonate conjugates that are capable of releasing antibacterial and cytotoxic components upon binding with bone tissue. Such conjugates are useful in the treatment and prevention of bone cancer and bone infections.
To find substances that are useful for the treatment of the primary bone tumors, as well as bone metastasis, the present inventors synthesized and tested novel bisphosphonate conjugates containing both an osteotropic and an antineoplastic (cytotoxic) moiety released upon binding of said conjugates to bone. The chemical bond(s) connecting bisphosphonate and the drug is both stable enough to survive in the bloodstream and yet is cleaved to liberate the drug when the conjugate binds to bone.
For example, in the case of osteomyelitis (bone infection), certain therapeutic antibiotics can be coupled to the bisphosphonate carrier molecule for delivery of high concentrations of antibiotic to various sites of bone infection. Examples of antibiotics include ciprofloxacin (a fluoroquinolone), ampicillin (a penicillin antibiotic), gentamycen (an aminoglycoside antibiotic) and cefalex (a cephalosporin antibiotic). The present invention thus provides certain novel bisphosphonate conjugates, pharmaceutical compositions, and methods of using such analogs in the treatment of bone cancer and other bone-related diseases. Examples of nucleoside derivatives useful in the present invention include 5-fluorouracil and inosine triphosphate derivatives. The biological activity of phosphonate conjugates and other molecules containing P—O—P—C—P type bonds, are demonstrated by both in vitro and in vivo models. The pharmaceutically acceptable salts and esters of the invention are characterized in that they have the general structure:
O═P(OH)
2
—C(R
1
,R
2
)—P(O)(OH)—X—Y
where X—OSN atom, Y=residue of cytotoxic or antibiotic compound;
where R1=H; R2=OR3, NR3, SR3, R3 and R3=H, alkyl, aryl, cycloalkyl, heteroyl, NH2.
Novel Bisphosphonate Conjugate-substituted Triphosphates
One aspect of the present invention is thus directed to the synthesis of pharmaceutical compositions and medical uses of such compositions. Particular embodiments of the present invention include anti-cancer drugs that are coupled to bisphosphonate, such drugs including but not limited to 5-fluorouracil, cisplatin, doxorubicin, methotrexate, antibiotics such as ciprofloxacine, aminoglycosides, penicillin, cephalosporins, quinolones, protein toxins, protein and/or peptide growth fact

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bisphosphonate conjugates and methods of making and using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bisphosphonate conjugates and methods of making and using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bisphosphonate conjugates and methods of making and using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3307212

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.